Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa.
Sci Rep. 2020 Mar 24;10(1):5348. doi: 10.1038/s41598-020-62425-w.
Pharmaceuticals have been classified as emerging water pollutants which are recalcitrant in nature. In the quest to find a suitable technique in removing them from contaminated water, photoelectrocatalytic oxidation method has attracted much attention in recent years. This report examined the feasibility of degrading ciprofloxacin and sulfamethoxazole through photoelectrocatalytic oxidation using FTO-BiVO/AgS with p-n heterojunction as anode. BiVO/AgS was prepared through electrodeposition and successive ionic layer adsorption/reaction on FTO glass. Structural and morphological studies using XRD, SEM, EDS and diffusive reflectance UV-Vis confirmed the successful construction of p-n heterojunction of BiVO/AgS. Electrochemical techniques were used to investigate enhanced charge separation in the binary electrode. The FTO-BiVO/AgS electrode exhibited the highest photocurrent response (1.194 mA/cm) and longest electron lifetime (0.40 ms) than both pristine BiVO and AgS electrodes which confirmed the reduction in recombination of charge carriers in the electrode. Upon application of the prepared FTO-BiVO/AgS in photoelectrocatalytic removal of ciprofloxacin and sulfamethoxazole, percentage removal of 80% and 86% were achieved respectively with a low bias potential of 1.2 V (vs Ag/AgCl) within 120 min. The electrode possesses good stability and reusability. The results obtained revealed BiVO/AgS as a suitable photoanode for removing recalcitrant pharmaceutical molecules in water.
药品已被归类为性质上难以降解的新兴水污染物质。在寻求从受污染的水中去除它们的合适技术时,光电催化氧化方法近年来引起了广泛关注。本报告研究了使用 FTO-BiVO/AgS 作为阳极通过光电催化氧化降解环丙沙星和磺胺甲恶唑的可行性,该电极具有 p-n 异质结。BiVO/AgS 通过在 FTO 玻璃上的电沉积和连续离子层吸附/反应制备。XRD、SEM、EDS 和漫反射紫外-可见光谱的结构和形态研究证实了 BiVO/AgS 的 p-n 异质结的成功构建。电化学技术用于研究二元电极中增强的电荷分离。与原始 BiVO 和 AgS 电极相比,FTO-BiVO/AgS 电极表现出最高的光电流响应(1.194 mA/cm)和最长的电子寿命(0.40 ms),这证实了电极中载流子复合的减少。在将制备的 FTO-BiVO/AgS 应用于光电催化去除环丙沙星和磺胺甲恶唑时,在 120 分钟内以 1.2 V(相对于 Ag/AgCl)的低偏置电压实现了 80%和 86%的去除率。该电极具有良好的稳定性和可重复使用性。所得结果表明 BiVO/AgS 是一种去除水中难降解药物分子的合适光阳极。