Department of Natural Resources and the Environment and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA.
Department of Biology, Virginia Commonwealth University, Richmond, VA, USA.
Ecol Lett. 2019 Dec;22(12):2049-2059. doi: 10.1111/ele.13388. Epub 2019 Sep 16.
Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest sub-set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation. We derive CSTs from multivariate canopy structure data, illustrating variation along three primary structural axes and resolution into six largely distinct and functionally relevant CSTs. Our results illustrate that within-ecosystem successional processes and disturbance legacies can produce variation in canopy structure similar to that associated with sub-continental variation in forest types and eco-climatic zones. The potential to classify ecosystems into CSTs based on suites of structural traits represents an important advance in understanding and modelling structure-function relationships in vegetated ecosystems.
植被冠层结构是陆地生态系统的一个基本特征,它决定了植被类型并驱动着生态系统功能。我们使用植被冠层的多元结构特征组成来对全球冠层结构谱内的生态系统进行分类。在该谱的温带森林子集内,我们评估了冠层结构特征的梯度变化,描述了冠层结构类型(CST),并评估了冠层结构变异的驱动因素和功能后果。我们从多元冠层结构数据中得出 CST,沿着三个主要的结构轴说明变化,并将其解析为六个主要的、明显的和功能相关的 CST。我们的研究结果表明,生态系统内部的演替过程和干扰遗留物会导致冠层结构的变化,这种变化与森林类型和生态气候区的次大陆变化有关。基于结构特征的综合特征对生态系统进行分类的可能性,代表了在理解和模拟植被生态系统的结构-功能关系方面的一个重要进展。