Suppr超能文献

协调空间尺度和生态理论,预测森林生态系统内鸟类丰富度和功能多样性。

Harmonizing spatial scales and ecological theories to predict avian richness and functional diversity within forest ecosystems.

机构信息

Biology Department, George Mason University, 4400 University Dr., Fairfax, VA 22030, USA.

Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA.

出版信息

Proc Biol Sci. 2023 Jun 28;290(2001):20230742. doi: 10.1098/rspb.2023.0742. Epub 2023 Jun 21.

Abstract

Classic ecological theory has proven that temperature, precipitation and productivity organize ecosystems at broad scales and are generalized drivers of biodiversity within different biomes. At local scales, the strength of these predictors is not consistent across different biomes. To better translate these theories to localized scales, it is essential to determine the links between drivers of biodiversity. Here we harmonize existing ecological theories to increase the predictive power for species richness and functional diversity. We test the relative importance of three-dimensional habitat structure as a link between local and broad-scale patterns of avian richness and functional diversity. Our results indicate that habitat structure is more important than precipitation, temperature and elevation gradients for predicting avian species richness and functional diversity across different forest ecosystems in North America. We conclude that forest structure, influenced by climatic drivers, is essential for predicting the response of biodiversity with future shifts in climatic regimes.

摘要

经典生态学理论已经证明,温度、降水和生产力在大尺度上组织生态系统,是不同生物群落中生物多样性的广义驱动因素。在小尺度上,这些预测因子的强度在不同的生物群落中并不一致。为了更好地将这些理论转化为本地化尺度,确定生物多样性驱动因素之间的联系至关重要。在这里,我们协调现有的生态学理论,以提高对物种丰富度和功能多样性的预测能力。我们测试了三维栖息地结构作为鸟类丰富度和功能多样性的局地和大尺度格局之间联系的重要性。我们的研究结果表明,与降水、温度和海拔梯度相比,栖息地结构对预测北美的不同森林生态系统中的鸟类物种丰富度和功能多样性更为重要。我们的结论是,森林结构受气候驱动因素的影响,对于预测生物多样性对未来气候格局变化的响应至关重要。

相似文献

1
Harmonizing spatial scales and ecological theories to predict avian richness and functional diversity within forest ecosystems.
Proc Biol Sci. 2023 Jun 28;290(2001):20230742. doi: 10.1098/rspb.2023.0742. Epub 2023 Jun 21.
2
The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.
PLoS One. 2014 Aug 7;9(8):e103236. doi: 10.1371/journal.pone.0103236. eCollection 2014.
4
Functional diversity response to hardwood forest management varies across taxa and spatial scales.
Ecol Appl. 2017 Jun;27(4):1064-1081. doi: 10.1002/eap.1532. Epub 2017 May 2.
6
Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients.
PLoS One. 2016 Mar 25;11(3):e0152468. doi: 10.1371/journal.pone.0152468. eCollection 2016.
7
Bat and bird diversity along independent gradients of latitude and tree composition in European forests.
Oecologia. 2016 Oct;182(2):529-37. doi: 10.1007/s00442-016-3671-9. Epub 2016 Jun 16.
8
Vertical stratification patterns of tropical forest vertebrates: a meta-analysis.
Biol Rev Camb Philos Soc. 2023 Feb;98(1):99-114. doi: 10.1111/brv.12896. Epub 2022 Sep 8.
9
Vegetation structure from LiDAR explains the local richness of birds across Denmark.
J Anim Ecol. 2023 Jul;92(7):1332-1344. doi: 10.1111/1365-2656.13945. Epub 2023 Jun 3.
10
Simulated treatment effects on bird communities inform landscape-scale dry conifer forest management.
Ecol Appl. 2022 Jun;32(4):e2555. doi: 10.1002/eap.2555. Epub 2022 Apr 24.

本文引用的文献

1
AVONET: morphological, ecological and geographical data for all birds.
Ecol Lett. 2022 Mar;25(3):581-597. doi: 10.1111/ele.13898.
2
Maintaining forest cover to enhance temperature buffering under future climate change.
Sci Total Environ. 2022 Mar 1;810:151338. doi: 10.1016/j.scitotenv.2021.151338. Epub 2021 Nov 5.
3
Classification of high-voltage power line structures in low density ALS data acquired over broad non-urban areas.
PeerJ Comput Sci. 2021 Aug 31;7:e672. doi: 10.7717/peerj-cs.672. eCollection 2021.
4
Global patterns and climatic controls of forest structural complexity.
Nat Commun. 2021 Jan 22;12(1):519. doi: 10.1038/s41467-020-20767-z.
6
Evaluating forest resilience to global threats using functional response traits and network properties.
Ecol Appl. 2020 Jul;30(5):e02095. doi: 10.1002/eap.2095. Epub 2020 Mar 23.
7
Defining a spectrum of integrative trait-based vegetation canopy structural types.
Ecol Lett. 2019 Dec;22(12):2049-2059. doi: 10.1111/ele.13388. Epub 2019 Sep 16.
8
Global buffering of temperatures under forest canopies.
Nat Ecol Evol. 2019 May;3(5):744-749. doi: 10.1038/s41559-019-0842-1. Epub 2019 Apr 1.
9
Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees.
Ecol Lett. 2019 Feb;22(2):245-255. doi: 10.1111/ele.13175. Epub 2018 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验