Suppr超能文献

基于人群的脂肪变性评估的非增强腹部 CT 自动肝脏脂肪定量。

Automated Liver Fat Quantification at Nonenhanced Abdominal CT for Population-based Steatosis Assessment.

机构信息

From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, Wis 53792-3252 (P.M.G., P.J.P.); and Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Md (V.S., R.M.S.).

出版信息

Radiology. 2019 Nov;293(2):334-342. doi: 10.1148/radiol.2019190512. Epub 2019 Sep 17.

Abstract

Background Nonalcoholic fatty liver disease and its consequences are a growing public health concern requiring cross-sectional imaging for noninvasive diagnosis and quantification of liver fat. Purpose To investigate a deep learning-based automated liver fat quantification tool at nonenhanced CT for establishing the prevalence of steatosis in a large screening cohort. Materials and Methods In this retrospective study, a fully automated liver segmentation algorithm was applied to noncontrast abdominal CT examinations from consecutive asymptomatic adults by using three-dimensional convolutional neural networks, including a subcohort with follow-up scans. Automated volume-based liver attenuation was analyzed, including conversion to CT fat fraction, and compared with manual measurement in a large subset of scans. Results A total of 11 669 CT scans in 9552 adults (mean age ± standard deviation, 57.2 years ± 7.9; 5314 women and 4238 men; median body mass index [BMI], 27.8 kg/m) were evaluated, including 2117 follow-up scans in 1862 adults (mean age, 59.2 years; 971 women and 891 men; mean interval, 5.5 years). Algorithm failure occurred in seven scans. Mean CT liver attenuation was 55 HU ± 10, corresponding to CT fat fraction of 6.4% (slightly fattier in men than in women [7.4% ± 6.0 vs 5.8% ± 5.7%; < .001]). Mean liver Hounsfield unit varied little by age (<4 HU difference among all age groups) and only weak correlation was seen with BMI ( = 0.14). By category, 47.9% (5584 of 11 669) had negligible or no liver fat (CT fat fraction <5%), 42.4% (4948 of 11 669) had mild steatosis (CT fat fraction of 5%-14%), 8.8% (1025 of 11 669) had moderate steatosis (CT fat fraction of 14%-28%), and 1% (112 of 11 669) had severe steatosis (CT fat fraction >28%). Excellent agreement was seen between automated and manual measurements, with a mean difference of 2.7 HU (median, 3 HU) and of 0.92. Among the subcohort with longitudinal follow-up, mean change was only -3 HU ± 9, but 43.3% (806 of 1861) of patients changed steatosis category between first and last scans. Conclusion This fully automated CT-based liver fat quantification tool allows for population-based assessment of hepatic steatosis and nonalcoholic fatty liver disease, with objective data that match well with manual measurement. The prevalence of at least mild steatosis was greater than 50% in this asymptomatic screening cohort. © RSNA, 2019.

摘要

背景 非酒精性脂肪性肝病及其后果是一个日益严重的公共卫生问题,需要进行横断面成像以进行非侵入性诊断和量化肝脏脂肪。目的 研究基于深度学习的自动肝脏脂肪定量工具在非增强 CT 中的应用,以在大型筛查队列中建立脂肪变性的患病率。材料与方法 本回顾性研究使用三维卷积神经网络对连续无症状成年人的非对比性腹部 CT 检查进行了全自动肝脏分段算法应用,包括具有随访扫描的子队列。分析了基于自动容积的肝脏衰减值,包括转换为 CT 脂肪分数,并与大量扫描的手动测量进行了比较。结果 在 9552 名成年人(平均年龄±标准差,57.2 岁±7.9;5314 名女性和 4238 名男性;中位数体重指数 [BMI],27.8 kg/m )中评估了 11669 次 CT 扫描,其中包括 1862 名成年人的 2117 次随访扫描(平均年龄,59.2 岁;971 名女性和 891 名男性;平均间隔,5.5 年)。有 7 次扫描出现算法失败。平均 CT 肝脏衰减值为 55 HU±10,对应 CT 脂肪分数为 6.4%(男性比女性稍胖[7.4%±6.0 比 5.8%±5.7%;<.001])。肝脏亨氏单位的平均值随年龄变化很小(所有年龄段之间的差异<4 HU),与 BMI 的相关性也很弱( = 0.14)。按类别,47.9%(11669 例中有 5584 例)肝脏脂肪含量很少或没有(CT 脂肪分数<5%),42.4%(11669 例中有 4948 例)有轻度脂肪变性(CT 脂肪分数为 5%-14%),8.8%(11669 例中有 1025 例)有中度脂肪变性(CT 脂肪分数为 14%-28%),1%(11669 例中有 112 例)有严重脂肪变性(CT 脂肪分数>28%)。自动和手动测量之间具有极好的一致性,平均差异为 2.7 HU(中位数为 3 HU), 为 0.92。在具有纵向随访的子队列中,平均变化仅为-3 HU±9,但在第一次和最后一次扫描之间,43.3%(1861 例中有 806 例)患者的脂肪变性类别发生了变化。结论 这种全自动 CT 肝脏脂肪定量工具可用于基于人群的肝脂肪变性和非酒精性脂肪性肝病评估,其客观数据与手动测量吻合良好。在这个无症状的筛查队列中,至少有轻度脂肪变性的患病率大于 50%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c03/6822771/81fafdc84c46/radiol.2019190512.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验