Kamdar Maulik R, Fernández Javier D, Polleres Axel, Tudorache Tania, Musen Mark A
1Center for Biomedical Informatics Research, Stanford University, Stanford, CA USA.
2Vienna University of Economics & Business, Vienna, Austria.
NPJ Digit Med. 2019 Sep 10;2:90. doi: 10.1038/s41746-019-0162-5. eCollection 2019.
The biomedical data landscape is fragmented with several isolated, heterogeneous data and knowledge sources, which use varying formats, syntaxes, schemas, and entity notations, existing on the Web. Biomedical researchers face severe logistical and technical challenges to query, integrate, analyze, and visualize data from multiple diverse sources in the context of available biomedical knowledge. Semantic Web technologies and Linked Data principles may aid toward Web-scale semantic processing and data integration in biomedicine. The biomedical research community has been one of the earliest adopters of these technologies and principles to publish data and knowledge on the Web as linked graphs and ontologies, hence creating the Life Sciences Linked Open Data (LSLOD) cloud. In this paper, we provide our perspective on some opportunities proffered by the use of LSLOD to integrate biomedical data and knowledge in three domains: (1) pharmacology, (2) cancer research, and (3) infectious diseases. We will discuss some of the major challenges that hinder the wide-spread use and consumption of LSLOD by the biomedical research community. Finally, we provide a few technical solutions and insights that can address these challenges. Eventually, LSLOD can enable the development of scalable, intelligent infrastructures that support artificial intelligence methods for augmenting human intelligence to achieve better clinical outcomes for patients, to enhance the quality of biomedical research, and to improve our understanding of living systems.
生物医学数据领域分散,存在多个孤立、异构的数据和知识源,它们以不同的格式、语法、模式和实体表示法存在于网络上。生物医学研究人员在结合现有生物医学知识查询、整合、分析和可视化来自多个不同来源的数据时面临严峻的后勤和技术挑战。语义网技术和关联数据原则可能有助于生物医学领域的网络规模语义处理和数据集成。生物医学研究界是最早采用这些技术和原则在网络上以关联图和本体形式发布数据和知识的群体之一,从而创建了生命科学关联开放数据(LSLOD)云。在本文中,我们阐述了利用LSLOD在三个领域整合生物医学数据和知识所带来的一些机遇:(1)药理学,(2)癌症研究,以及(3)传染病研究。我们将讨论阻碍生物医学研究界广泛使用和利用LSLOD的一些主要挑战。最后,我们提供一些能够应对这些挑战的技术解决方案和见解。最终,LSLOD能够推动可扩展的智能基础设施的发展,这些基础设施支持人工智能方法,以增强人类智能,为患者实现更好的临床结果,提高生物医学研究质量,并增进我们对生命系统的理解。