Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
J Neurophysiol. 2019 Nov 1;122(5):2061-2075. doi: 10.1152/jn.00116.2019. Epub 2019 Sep 18.
The rodent's vibrissal system is a useful model system for studying sensorimotor integration in perception. This integration determines the way in which sensory information is acquired by sensory organs and the motor commands that control them. The initial instance of sensorimotor integration in the whisker somatosensory system is implemented in the brain stem loop and may be essential to the way rodents explore and sense their environment. To examine the nature of these sensorimotor interactions, we recorded from lightly anesthetized rats in vivo and brain stem slices in vitro and isolated specific parts of this loop. We found that motor feedback to the vibrissal pad serves as a dynamic gain controller that controls the response of first-order sensory neurons by increasing and decreasing sensitivity to lower and higher tactile stimulus magnitudes, respectively. This delicate mechanism is mediated through tactile stimulus magnitude-dependent motor feedback. Conversely, tactile inputs affect the motor whisking output through influences on the rhythmic whisking circuitry, thus changing whisking kinetics. Similarly, tactile influences also modify the whisking amplitude through synaptic and intrinsic neuronal interaction in the facial nucleus, resulting in facilitation or suppression of whisking amplitude. These results point to the vast range of mechanisms underlying sensorimotor integration in the brain stem loop. Sensorimotor integration is a process in which sensory and motor information is combined to control the flow of sensory information, as well as to adjust the motor system output. We found in the rodent's whisker somatosensory system mutual influences between tactile inputs and motor output, in which motor neurons control the flow of sensory information depending on their magnitude. Conversely, sensory information can control the magnitude and kinetics of whisker movement.
啮齿动物的触须系统是研究感知中感觉运动整合的有用模型系统。这种整合决定了感觉器官获取感觉信息的方式以及控制这些信息的运动指令。触须感觉系统中感觉运动整合的初始实例是在脑干回路中实现的,这对于啮齿动物探索和感知其环境的方式可能是必不可少的。为了研究这些感觉运动相互作用的性质,我们在体内麻醉大鼠和脑片外记录,并分离出这个回路的特定部分。我们发现,向触须垫的运动反馈充当动态增益控制器,通过增加和降低对较低和较高触觉刺激幅度的敏感性,分别控制一级感觉神经元的反应。这种微妙的机制是通过触觉刺激幅度依赖的运动反馈来介导的。相反,触觉输入通过对节律性触须电路的影响来影响运动触须输出,从而改变触须动力学。同样,触觉输入也通过面部核内的突触和内在神经元相互作用来改变触须幅度,从而促进或抑制触须幅度。这些结果表明,脑干回路中的感觉运动整合存在广泛的机制。感觉运动整合是一个将感觉和运动信息结合起来控制感觉信息流动以及调整运动系统输出的过程。我们在啮齿动物的触须感觉系统中发现了触觉输入和运动输出之间的相互影响,其中运动神经元根据其幅度控制感觉信息的流动。相反,感觉信息可以控制触须运动的幅度和动力学。