Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam 1081 HV, The Netherlands.
Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland, and.
J Neurosci. 2019 Sep 11;39(37):7332-7343. doi: 10.1523/JNEUROSCI.0693-19.2019. Epub 2019 Jul 22.
The posterior parietal cortex (PPC) in rodents is reciprocally connected to primary somatosensory and vibrissal motor cortices. The PPC neuronal circuitry could thus encode and potentially integrate incoming somatosensory information and whisker motor output. However, the information encoded across PPC layers during refined sensorimotor behavior remains largely unknown. To uncover the sensorimotor features represented in PPC during voluntary whisking and object touch, we performed loose-patch single-unit recordings and extracellular recordings of ensemble activity, covering all layers of PPC in anesthetized and awake, behaving male rats. First, using single-cell receptive field mapping, we revealed the presence of coarse somatotopy along the mediolateral axis in PPC. Second, we found that spiking activity was modulated during exploratory whisking in layers 2-4 and layer 6, but not in layer 5 of awake, behaving rats. Population spiking activity preceded actual movement, and whisker trajectory endpoints could be decoded by population spiking, suggesting that PPC is involved in movement planning. Finally, population spiking activity further increased in response to active whisker touch but only in PPC layers 2-4. Thus, we find layer-specific processing, which emphasizes the computational role of PPC during whisker sensorimotor behavior. The posterior parietal cortex (PPC) is thought to merge information on motor output and sensory input to orchestrate interaction with the environment, but the function of different PPC microcircuit components is poorly understood. We recorded neuronal activity in rat PPC during sensorimotor behavior involving motor and sensory pathways. We uncovered that PPC layers have dedicated function: motor and sensory information is merged in layers 2-4; layer 6 predominantly represents motor information. Collectively, PPC activity predicts future motor output, thus entailing a motor plan. Our results are important for understanding how PPC computationally processes motor output and sensory input. This understanding may facilitate decoding of brain activity when using brain-machine interfaces to overcome loss of function after, for instance, spinal cord injury.
啮齿动物的后顶叶皮层 (PPC) 与初级体感和触须运动皮层之间存在相互连接。因此,PPC 神经元回路可以对传入的体感信息和触须运动输出进行编码和潜在整合。然而,在精细的感觉运动行为过程中,PPC 各层之间编码的信息在很大程度上仍然未知。为了揭示自愿触须运动和物体触摸期间 PPC 中所代表的感觉运动特征,我们在麻醉和清醒、行为活跃的雄性大鼠中进行了松散贴片单细胞记录和群体活动的细胞外记录,覆盖了 PPC 的所有层。首先,使用单细胞感受野映射,我们揭示了 PPC 中沿中侧轴存在粗略的躯体定位。其次,我们发现,在清醒、行为活跃的大鼠中,2-4 层和 6 层的皮层中的尖峰活动在探索性触须运动时被调制,但 5 层中没有。群体尖峰活动先于实际运动,并且可以通过群体尖峰活动解码触须轨迹终点,这表明 PPC 参与运动规划。最后,群体尖峰活动在主动触须触摸时进一步增加,但仅在 PPC 的 2-4 层中增加。因此,我们发现了特定于层的处理,这强调了 PPC 在触须感觉运动行为中的计算作用。后顶叶皮层 (PPC) 被认为融合了关于运动输出和感觉输入的信息,以协调与环境的相互作用,但不同 PPC 微电路组件的功能知之甚少。我们在涉及运动和感觉通路的感觉运动行为过程中记录了大鼠 PPC 的神经元活动。我们发现,PPC 层具有特定的功能:运动和感觉信息在 2-4 层中融合;6 层主要代表运动信息。总体而言,PPC 活动预测未来的运动输出,从而包含运动计划。我们的结果对于理解 PPC 如何对运动输出和感觉输入进行计算处理很重要。当使用脑机接口来克服例如脊髓损伤后的功能丧失时,这种理解可能有助于对大脑活动进行解码。