Suppr超能文献

倍半萜烯内酯多样化的基础是吉马烯 A 氧化酶的催化可塑性。

Catalytic Plasticity of Germacrene A Oxidase Underlies Sesquiterpene Lactone Diversification.

机构信息

University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada.

Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.

出版信息

Plant Physiol. 2019 Nov;181(3):945-960. doi: 10.1104/pp.19.00629. Epub 2019 Sep 18.

Abstract

Adaptive evolution of enzymes benefits from catalytic promiscuity. Sesquiterpene lactones (STLs) have diverged extensively in the Asteraceae, and studies of the enzymes for two representative STLs, costunolide and artemisinin, could provide an insight into the adaptive evolution of enzymes. Costunolide appeared early in Asteraceae evolution and is widespread, whereas artemisinin is a unique STL appearing in a single Asteraceae species, Therefore, costunolide is a ubiquitous STL, while artemisinin is a specialized one. In costunolide biosynthesis, germacrene A oxidase (GAO) synthesizes germacrene A acid from germacrene A. Similarly, in artemisinin biosynthesis, amorphadiene oxidase (AMO) synthesizes artemisinic acid from amorphadiene. GAO promiscuity is suggested to drive the diversification of STLs. To examine the degree of GAO promiscuity, we expressed six sesquiterpene synthases from cotton (), goldenrod (), valerian (), agarwood (), tobacco (), and orange () in yeast to produce seven distinct sesquiterpene substrates (germacrene D, 5--aristolochene, valencene, δ-cadinene, α- and δ-guaienes, and valerenadiene). or was coexpressed in these yeasts to evaluate the promiscuities of GAO and AMO. Remarkably, all sesquiterpenes tested were oxidized to sesquiterpene acids by GAO, but negligible activities were found from AMO. Hence, GAO apparently has catalytic potential to evolve into different enzymes for synthesizing distinct STLs, while the recently specialized AMO demonstrates rigid substrate specificity. Mutant GAOs implanted with active site residues of AMO showed substantially reduced stability, but their per enzyme activities to produce artemisinic acid increased by 9-fold. Collectively, these results suggest promiscuous GAOs can be developed as novel catalysts for synthesizing unique sesquiterpene derivatives.

摘要

酶的适应性进化受益于催化的多功能性。倍半萜内酯(STLs)在菊科中广泛分化,研究两种代表性 STLs(木香烯内酯和青蒿素)的酶可以深入了解酶的适应性进化。木香烯内酯在菊科进化早期出现且广泛存在,而青蒿素是一种独特的 STL,仅出现在菊科的一个物种中。因此,木香烯内酯是一种普遍存在的 STL,而青蒿素是一种特殊的 STL。在木香烯内酯生物合成中,倍半萜烯氧化酶(GAO)将倍半萜烯 A 酸从倍半萜烯 A 中合成。同样,在青蒿素生物合成中,阿密醇氧化酶(AMO)将青蒿酸从阿密醇中合成。GAO 的多功能性被认为推动了 STLs 的多样化。为了研究 GAO 的多功能性程度,我们在酵母中表达了来自棉花()、一枝黄花()、缬草()、沉香()、烟草()和橙子()的六种倍半萜合酶,以产生七种不同的倍半萜底物(大根香叶烯 D、5--榄香烯、缬烯、δ-卡巴烯、α-和 δ-愈创木烯、以及缬草酸)。在这些酵母中共同表达 或 ,以评估 GAO 和 AMO 的多功能性。值得注意的是,所有测试的倍半萜都被 GAO 氧化成倍半萜酸,但 AMO 几乎没有活性。因此,GAO 显然具有进化为不同酶的催化潜力,以合成不同的 STLs,而最近专门化的 AMO 表现出严格的底物特异性。植入 AMO 活性位点残基的突变 GAO 显示出明显降低的稳定性,但它们每酶产生青蒿酸的活性增加了 9 倍。总的来说,这些结果表明多功能的 GAO 可以开发为合成独特倍半萜衍生物的新型催化剂。

相似文献

引用本文的文献

1
Plant sesquiterpene lactones.植物倍半萜内酯。
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230350. doi: 10.1098/rstb.2023.0350. Epub 2024 Sep 30.
7
Biosynthesis of valerenic acid by engineered Saccharomyces cerevisiae.工程化酿酒酵母合成缬草酸。
Biotechnol Lett. 2022 Jul;44(7):857-865. doi: 10.1007/s10529-022-03264-9. Epub 2022 May 29.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验