Baddoo Peter J, Crowdy Darren G
DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK.
Proc Math Phys Eng Sci. 2019 Aug;475(2228):20190225. doi: 10.1098/rspa.2019.0225. Epub 2019 Aug 7.
We present an extension to the theory of Schwarz-Christoffel (S-C) mappings by permitting the target domain to be a single period window of a periodic configuration having multiple polygonal (straight-line) boundaries per period. Taking the arrangements to be periodic in the -direction in an (, )-plane, three cases are considered; these differ in whether the period window extends off to infinity as → ± ∞, or extends off to infinity in only one direction ( → + ∞ or → - ∞), or is bounded. The preimage domain is taken to be a multiply connected circular domain. The new S-C mapping formulae are shown to be expressible in terms of the Schottky-Klein prime function associated with the circular preimage domains. As usual for an S-C map, the formulae are explicit but depend on a finite set of accessory parameters. The solution of this parameter problem is discussed in detail, and illustrative examples are presented to highlight the essentially constructive nature of the results.
我们通过允许目标域为每个周期具有多个多边形(直线)边界的周期配置的单个周期窗口,对施瓦茨 - 克里斯托费尔(S - C)映射理论进行了扩展。在(x,y)平面中,将这些排列视为在x方向上是周期性的,考虑了三种情况;这些情况的不同之处在于周期窗口在x→±∞时是否延伸到无穷远,或者仅在一个方向(x→ +∞或x→ -∞)延伸到无穷远,或者是有界的。原像域被视为一个多重连通的圆形域。新的S - C映射公式被证明可以用与圆形原像域相关的肖特基 - 克莱因素函数来表示。与S - C映射一样,这些公式是显式的,但依赖于一组有限的辅助参数。详细讨论了这个参数问题的解,并给出了说明性示例以突出结果的本质建设性。