Suppr超能文献

通过翼型叶栅的势流:正问题与反问题

Potential flow through a cascade of aerofoils: direct and inverse problems.

作者信息

Baddoo P J, Ayton L J

机构信息

Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, UK.

出版信息

Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180065. doi: 10.1098/rspa.2018.0065. Epub 2018 Sep 12.

Abstract

The potential flow through an infinite cascade of aerofoils is considered as both a direct and inverse problem. In each case, a perturbation expansion about a background uniform flow is assumed where the size of the perturbation is comparable to the aspect ratio of the aerofoils. This perturbation must decay far upstream and also satisfy particular edge conditions, including the Kutta condition at each trailing edge. In the direct problem, the flow field through a cascade of aerofoils of known geometry is calculated. This is solved analytically by recasting the situation as a Riemann-Hilbert problem with only imaginary values prescribed on the chords. As the distance between aerofoils is taken to infinity, the solution is seen to converge to a known analytic expression for a single aerofoil. Analytic expressions for the surface velocity, lift and deflection angle are presented as functions of aerofoil geometry, angle of attack and stagger angle; these show good agreement with numerical results. In the inverse problem, the aerofoil geometry is calculated from a prescribed tangential surface velocity along the chords and upstream angle of attack. This is found via the solution of a singular integral equation prescribed on the chords of the aerofoils.

摘要

通过无限翼型叶栅的势流被视为一个正问题和一个反问题。在每种情况下,都假设围绕背景均匀流进行微扰展开,其中微扰的大小与翼型的展弦比相当。这种微扰必须在远上游衰减,并且还需满足特定的边界条件,包括每个后缘处的库塔条件。在正问题中,计算通过已知几何形状的叶栅的流场。通过将该情况重新表述为仅在弦上规定虚数值的黎曼 - 希尔伯特问题来解析求解。当叶栅中翼型之间的距离趋于无穷大时,解收敛到单个翼型的已知解析表达式。给出了表面速度、升力和偏转角的解析表达式,它们是翼型几何形状、攻角和 stagger 角的函数;这些结果与数值结果显示出良好的一致性。在反问题中,根据沿弦规定的切向表面速度和上游攻角来计算翼型几何形状。这是通过在翼型弦上规定的奇异积分方程的解来找到的。

相似文献

1
Potential flow through a cascade of aerofoils: direct and inverse problems.通过翼型叶栅的势流:正问题与反问题
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180065. doi: 10.1098/rspa.2018.0065. Epub 2018 Sep 12.
2
The steady aerodynamics of aerofoils with porosity gradients.具有孔隙率梯度的翼型的稳态空气动力学。
Proc Math Phys Eng Sci. 2017 Sep;473(2205):20170266. doi: 10.1098/rspa.2017.0266. Epub 2017 Sep 27.
7
Control of vortex shedding on two- and three-dimensional aerofoils.二维和三维翼型上的涡脱落控制。
Philos Trans A Math Phys Eng Sci. 2011 Apr 13;369(1940):1525-39. doi: 10.1098/rsta.2010.0355.
8
Bioinspired aerofoil adaptations: the next steps for theoretical models.仿生机翼适应性:理论模型的下一步。
Philos Trans A Math Phys Eng Sci. 2019 Dec 2;377(2159):20190070. doi: 10.1098/rsta.2019.0070. Epub 2019 Oct 14.
10
Numerical solution of scattering problems using a Riemann-Hilbert formulation.基于黎曼-希尔伯特公式的散射问题数值解
Proc Math Phys Eng Sci. 2019 Sep;475(2229):20190105. doi: 10.1098/rspa.2019.0105. Epub 2019 Sep 4.

引用本文的文献

本文引用的文献

1
The steady aerodynamics of aerofoils with porosity gradients.具有孔隙率梯度的翼型的稳态空气动力学。
Proc Math Phys Eng Sci. 2017 Sep;473(2205):20170266. doi: 10.1098/rspa.2017.0266. Epub 2017 Sep 27.
2
A review of fish swimming mechanics and behaviour in altered flows.关于鱼类在水流改变情况下游泳力学与行为的综述。
Philos Trans R Soc Lond B Biol Sci. 2007 Nov 29;362(1487):1973-93. doi: 10.1098/rstb.2007.2082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验