Suppr超能文献

基于体素的局部晚期头颈癌治疗前PET/CT图像中局部复发亚区域的识别

Voxel-based identification of local recurrence sub-regions from pre-treatment PET/CT for locally advanced head and neck cancers.

作者信息

Beaumont J, Acosta O, Devillers A, Palard-Novello X, Chajon E, de Crevoisier R, Castelli J

机构信息

Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, 35000, Rennes, France.

Department of Radiotherapy, Centre Eugene Marquis, avenue de la Bataille Flandre Dunkerque, 35000, Rennes, France.

出版信息

EJNMMI Res. 2019 Sep 18;9(1):90. doi: 10.1186/s13550-019-0556-z.

Abstract

BACKGROUND

Overall, 40% of patients with a locally advanced head and neck cancer (LAHNC) treated by chemoradiotherapy (CRT) present local recurrence within 2 years after the treatment. The aims of this study were to characterize voxel-wise the sub-regions where tumor recurrence appear and to predict their location from pre-treatment F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images.

MATERIALS AND METHODS

Twenty-six patients with local failure after treatment were included in this study. Local recurrence volume was identified by co-registering pre-treatment and recurrent PET/CT images using a customized rigid registration algorithm. A large set of voxel-wise features were extracted from pre-treatment PET to train a random forest model allowing to predict local recurrence at the voxel level.

RESULTS

Out of 26 expert-assessed registrations, 15 provided enough accuracy to identify recurrence volumes and were included for further analysis. Recurrence volume represented on average 23% of the initial tumor volume. The MTV with a threshold of 50% of SUVmax plus a 3D margin of 10 mm covered on average 89.8% of the recurrence and 96.9% of the initial tumor. SUV and MTV alone were not sufficient to identify the area of recurrence. Using a random forest model, 15 parameters, combining radiomics and spatial location, were identified, allowing to predict the recurrence sub-regions with a median area under the receiver operating curve of 0.71 (range 0.14-0.91).

CONCLUSION

As opposed to regional comparisons which do not bring enough evidence for accurate prediction of recurrence volume, a voxel-wise analysis of FDG-uptake features suggested a potential to predict recurrence with enough accuracy to consider tailoring CRT by dose escalation within likely radioresistant regions.

摘要

背景

总体而言,接受放化疗(CRT)治疗的局部晚期头颈癌(LAHNC)患者中有40%在治疗后2年内出现局部复发。本研究的目的是对肿瘤复发出现的亚区域进行体素级表征,并从治疗前的F-氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)图像预测其位置。

材料与方法

本研究纳入了26例治疗后出现局部失败的患者。使用定制的刚性配准算法将治疗前和复发时的PET/CT图像配准,以确定局部复发体积。从治疗前的PET中提取了大量体素级特征,以训练一个随机森林模型,从而在体素水平预测局部复发。

结果

在26例由专家评估的配准中,15例具有足够的准确性来识别复发体积,并被纳入进一步分析。复发体积平均占初始肿瘤体积的23%。SUVmax阈值为50%加上10mm三维边缘的代谢肿瘤体积(MTV)平均覆盖了89.8%的复发灶和96.9%的初始肿瘤。仅SUV和MTV不足以识别复发区域。使用随机森林模型,确定了15个结合了影像组学和空间位置的参数,能够预测复发亚区域,受试者操作特征曲线下面积中位数为0.71(范围0.14 - 0.91)。

结论

与区域比较相比,区域比较没有为准确预测复发体积提供足够的证据,对FDG摄取特征进行体素级分析表明,有可能以足够的准确性预测复发,从而考虑在可能的放射抗拒区域通过剂量递增来调整CRT方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b2/6751236/944cd834a8db/13550_2019_556_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验