Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Institut Curie, Inserm, Université Paris-Saclay, Orsay, France.
DOSIsoft SA, Cachan, France.
Med Phys. 2022 Jun;49(6):3816-3829. doi: 10.1002/mp.15603. Epub 2022 Apr 21.
Translation of predictive and prognostic image-based learning models to clinical applications is challenging due in part to their lack of interpretability. Some deep-learning-based methods provide information about the regions driving the model output. Yet, due to the high-level abstraction of deep features, these methods do not completely solve the interpretation challenge. In addition, low sample size cohorts can lead to instabilities and suboptimal convergence for models involving a large number of parameters such as convolutional neural networks.
Here, we propose a method for designing radiomic models that combines the interpretability of handcrafted radiomics with a sub-regional analysis.
Our approach relies on voxel-wise engineered radiomic features with average global aggregation and logistic regression. The method is illustrated using a small dataset of 51 soft tissue sarcoma (STS) patients where the task is to predict the risk of lung metastasis occurrence during the follow-up period.
Using positron emission tomography/computed tomography and two magnetic resonance imaging sequences separately to build two radiomic models, we show that our approach produces quantitative maps that highlight the signal that contributes to the decision within the tumor region of interest. In our STS example, the analysis of these maps identified two biological patterns that are consistent with STS grading systems and knowledge: necrosis development and glucose metabolism of the tumor.
We demonstrate how that method makes it possible to spatially and quantitatively interpret radiomic models amenable to sub-regions identification and biological interpretation for patient stratification.
由于预测性和预后性基于影像的学习模型缺乏可解释性,因此将其转化为临床应用具有挑战性。一些基于深度学习的方法提供了有关驱动模型输出的区域的信息。然而,由于深度学习特征的高度抽象性,这些方法并不能完全解决解释挑战。此外,小样本量队列可能导致涉及大量参数(如卷积神经网络)的模型不稳定和次优收敛。
在这里,我们提出了一种设计放射组学模型的方法,该方法将手工放射组学的可解释性与子区域分析相结合。
我们的方法依赖于体素级的工程放射组学特征,具有平均全局聚合和逻辑回归。该方法使用 51 名软组织肉瘤(STS)患者的小数据集进行说明,任务是预测在随访期间发生肺转移的风险。
使用正电子发射断层扫描/计算机断层扫描和两个磁共振成像序列分别构建两个放射组学模型,我们表明我们的方法生成了定量图谱,突出了肿瘤感兴趣区域内有助于决策的信号。在我们的 STS 示例中,对这些图谱的分析确定了两种与 STS 分级系统和知识一致的生物学模式:坏死发展和肿瘤的葡萄糖代谢。
我们展示了该方法如何能够对适用于子区域识别和生物学解释的放射组学模型进行空间和定量解释,以实现患者分层。