Liu Hongying, Shang Fanhua, Yang Shuyuan, Gong Maoguo, Zhu Tianwen, Jiao Licheng
IEEE Trans Neural Netw Learn Syst. 2020 Aug;31(8):3007-3016. doi: 10.1109/TNNLS.2019.2935027. Epub 2019 Sep 12.
In this article, a new deep neural network based on sparse filtering and manifold regularization (DSMR) is proposed for feature extraction and classification of polarimetric synthetic aperture radar (PolSAR) data. DSMR uses a novel deep neural network (DNN) to automatically learn features from raw SAR data. During preprocessing, the spatial information between pixels on PolSAR images is exploited to weight each data sample. Then, in the pretraining and fine-tuning, DSMR uses the population sparsity and the lifetime sparsity (dual sparsity) to learn the global features and preserves the local structure of data by neighborhood-based manifold regularization. The dual sparsity only needs to tune a few parameters, and the manifold regularization cuts down the number of training samples. Experimental results on synthesized and real PolSAR data sets from different SAR systems show that DSMR can improve classification accuracy compared with conventional DNNs, even for data sets with a large angle of incidence.
本文提出了一种基于稀疏滤波和流形正则化的新型深度神经网络(DSMR),用于极化合成孔径雷达(PolSAR)数据的特征提取和分类。DSMR使用一种新型深度神经网络(DNN)从原始SAR数据中自动学习特征。在预处理过程中,利用PolSAR图像上像素之间的空间信息对每个数据样本进行加权。然后,在预训练和微调过程中,DSMR使用总体稀疏性和寿命稀疏性(双重稀疏性)来学习全局特征,并通过基于邻域的流形正则化保留数据的局部结构。双重稀疏性只需要调整几个参数,流形正则化减少了训练样本的数量。来自不同SAR系统的合成和真实PolSAR数据集的实验结果表明,与传统的DNN相比,DSMR可以提高分类精度,即使对于入射角较大的数据集也是如此。