Physical Chemistry, Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany.
Institute of Technical Chemistry, Technical University of Braunschweig, 38106, Braunschweig, Germany.
Chemphyschem. 2019 Nov 19;20(22):3010-3023. doi: 10.1002/cphc.201900653. Epub 2019 Oct 14.
We investigated the formation of Pt nanocubes (NCs) and their electrocatalytic oxygen reduction reaction (ORR) properties and structural stability using two different capping agents, namely, polyvinylpyrrolidone (PVP) and oleylamine (OAm). The mono-dispersity of the obtained Pt NCs and their interactions with PVP and OAm were analyzed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The TEM data show a high mono-dispersity (82 %) and a large mean particle size (9-10 nm) for the Pt NCs obtained by the oleylamine-assisted method compared to those prepared via the PVP-assisted procedure (68 %, 6-7 nm). FTIR, XPS, and TGA data show that PVP and OAm still remain at the Pt surface, despite washing. Interestingly, the OAm-capped Pt NCs show significantly higher electrochemically active surface area (ECSA) and ORR activity than the PVP-capped ones. An accelerated stress protocol, however, reveals that the OAm-capped NCs possess a poor structural stability during electrochemical cycling. The loss of a defined surface arrangement in the NCs is connected with a transformation into a near-spherical particle shape. In contrast, the PVP-capped NCs mainly retain their particle shape due to their strong capping behavior. In addition, we have developed a degradation model for NCs as a function of electrochemical parameters such as upper potential and cycle number. Altogether, we provide fundamental insights into the electronic interactions between capping agent and Pt NCs and the role of the adsorption strength of the capping agent in improving the electrochemical ORR performance as well as the structural stability of shape-controlled nanoparticles.
我们使用两种不同的稳定剂,即聚乙烯吡咯烷酮(PVP)和油胺(OAm),研究了 Pt 纳米立方体(NCs)的形成及其对氧还原反应(ORR)的电催化性能和结构稳定性。通过透射电子显微镜(TEM)、能量色散 X 射线光谱(EDX)、X 射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和热重分析(TGA)分析了所得到的 Pt NCs 的单分散性及其与 PVP 和 OAm 的相互作用。TEM 数据显示,与通过 PVP 辅助法制备的 Pt NCs(68%,6-7nm)相比,通过油胺辅助法制备的 Pt NCs 的单分散性(82%)和平均粒径(9-10nm)较大。FTIR、XPS 和 TGA 数据表明,尽管经过洗涤,PVP 和 OAm 仍保留在 Pt 表面。有趣的是,OAm 封端的 Pt NCs 表现出比 PVP 封端的 Pt NCs 更高的电化学活性表面积(ECSA)和 ORR 活性。然而,加速应力协议表明,OAm 封端的 NCs 在电化学循环过程中结构稳定性较差。NCs 中定义明确的表面排列的损失与向近球形颗粒形状的转变有关。相比之下,由于其强封端行为,PVP 封端的 NCs 主要保留其颗粒形状。此外,我们已经开发了一个作为电化学参数(如上限电势和循环数)函数的 NCs 降解模型。总的来说,我们提供了关于稳定剂与 Pt NCs 之间的电子相互作用以及稳定剂吸附强度在改善电化学 ORR 性能以及形状控制纳米粒子结构稳定性方面的作用的基本见解。