BASF SE, Dept. of Material Physics and Dept. of Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.
Nanoscale. 2019 Oct 3;11(38):17637-17654. doi: 10.1039/c9nr03306h.
The project nanoGRAVUR (BMBF, 2015-2018) developed a framework for grouping of nanomaterials. Different groups may result for each of the three distinct perspectives of occupational, consumer and environmental safety. The properties, methods and descriptors are harmonised between the three perspectives and are based on: Tier 1 intrinsic physico-chemical properties (what they are) or GHS classification of the non-nano-form (human tox, ecotox, physical hazards); Tier 2 extrinsic physico-chemical properties, release from nano-enabled products, in vitro assays with cells (where they go; what they do); Tier 3 case-specific tests, potentially in vivo studies to substantiate the similarity within groups or application-specific exposure testing. Amongst all properties, dissolution and transformation are least modulated by different nanoforms within one substance, whereas dustiness, dispersion stability, abiotic and especially in vitro surface reactivity vary more often between different nanoforms. The methods developed or selected by nanoGRAVUR fill several gaps highlighted in the ProSafe reviews, and are useful to implement (i) the concept of nanoforms of the European Chemicals Agency (ECHA) and (ii) the concept of discrete forms of the United States Environmental Protection Agency (EPA). One cannot assess the significance of a dissimilarity, if the dynamic range of that property is unknown. Benchmark materials span dynamic ranges that enable us to establish bands, often with order-of-magnitude ranges. In 34 case studies we observed high biological similarity within each substance when we compared different (nano)forms of SiO2, BaSO4, kaolin, CeO2, ZnO, organic pigments, especially when we compared forms that are all untreated on the surface. In contrast, different Fe2O3 or TiO2 (nano)forms differ more significantly. The same nanoforms were also integrated in nano-enabled products (NEPs) for automotive coatings, clinker-reduced cements, cosmetic sunscreen, and lightweight polymers.
项目 nanoGRAVUR(BMBF,2015-2018)开发了一个纳米材料分组框架。对于职业、消费者和环境安全这三个不同视角,可能会产生不同的分组。这些特性、方法和描述符在这三个视角之间是协调一致的,并且基于以下内容:一级固有物理化学特性(它们是什么)或非纳米形态的 GHS 分类(人类毒性、生态毒性、物理危害);二级外在物理化学特性、纳米产品释放、细胞体外分析(它们去向何处;它们做什么);三级特定案例测试,可能是体内研究,以证实组内的相似性或特定应用的暴露测试。在所有特性中,溶解和转化受同一物质中不同纳米形态的调节最小,而粉尘、分散稳定性、非生物和特别是体外表面反应性在不同纳米形态之间更经常变化。nanoGRAVUR 开发或选择的方法填补了 ProSafe 审查中强调的几个空白,并且有助于实施 (i) 欧洲化学品管理局(ECHA)的纳米形态概念和 (ii) 美国环境保护署(EPA)的离散形态概念。如果不知道该特性的动态范围,就无法评估差异的重要性。基准材料跨越了动态范围,使我们能够建立通常具有数量级范围的波段。在 34 项案例研究中,当我们比较不同(纳米)形态的 SiO2、BaSO4、高岭土、CeO2、ZnO、有机颜料,尤其是当我们比较所有表面未经处理的形态时,我们观察到每个物质内具有很高的生物学相似性。相比之下,不同的 Fe2O3 或 TiO2(纳米)形态差异更为显著。相同的纳米形态也被整合到汽车涂料、熟料减少水泥、化妆品防晒霜和轻质聚合物等纳米增强产品(NEP)中。