Department of Genetics, Stanford University, Stanford, CA, USA.
Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
PLoS Genet. 2019 Sep 20;15(9):e1008293. doi: 10.1371/journal.pgen.1008293. eCollection 2019 Sep.
Sex-biased demographic events ("sex-bias") involve unequal numbers of females and males. These events are typically inferred from the relative amount of X-chromosomal to autosomal genetic variation and have led to conflicting conclusions about human demographic history. Though population size changes alter the relative amount of X-chromosomal to autosomal genetic diversity even in the absence of sex-bias, this has generally not been accounted for in sex-bias estimators to date. Here, we present a novel method to identify sex-bias from genetic sequence data that models population size changes and estimates the female fraction of the effective population size during each time epoch. Compared to recent sex-bias inference methods, our approach can detect sex-bias that changes on a single population branch without requiring data from an outgroup or knowledge of divergence events. When applied to simulated data, conventional sex-bias estimators are biased by population size changes, especially recent growth or bottlenecks, while our estimator is unbiased. We next apply our method to high-coverage exome data from the 1000 Genomes Project and estimate a male bias in Yorubans (47% female) and Europeans (44%), possibly due to stronger background selection on the X chromosome than on the autosomes. Finally, we apply our method to the 1000 Genomes Project Phase 3 high-coverage Complete Genomics whole-genome data and estimate a female bias in Yorubans (63% female), Europeans (84%), Punjabis (82%), as well as Peruvians (56%), and a male bias in the Southern Han Chinese (45%). Our method additionally identifies a male-biased migration out of Africa based on data from Europeans (20% female). Our results demonstrate that modeling population size change is necessary to estimate sex-bias parameters accurately. Our approach gives insight into signatures of sex-bias in sexual species, and the demographic models it produces can serve as more accurate null models for tests of selection.
性偏性人口事件(“性偏”)涉及雌性和雄性数量的不平等。这些事件通常是从 X 染色体与常染色体遗传变异的相对数量推断出来的,这导致了关于人类人口历史的相互矛盾的结论。尽管人口规模的变化即使在没有性偏的情况下也会改变 X 染色体与常染色体遗传多样性的相对数量,但迄今为止,在性偏估计器中并没有考虑到这一点。在这里,我们提出了一种从遗传序列数据中识别性偏的新方法,该方法可以对种群规模变化进行建模,并估计每个时间点的有效种群中雌性的比例。与最近的性偏推断方法相比,我们的方法可以在不需要来自外群的数据或了解分歧事件的情况下,检测到单个种群分支上的性偏变化。当应用于模拟数据时,传统的性偏估计器会受到种群规模变化的影响,尤其是最近的增长或瓶颈,而我们的估计器则不受影响。接下来,我们将我们的方法应用于 1000 基因组计划的高覆盖率外显子组数据,并估计了约鲁巴人(47%女性)和欧洲人(44%)的男性偏倚,这可能是由于 X 染色体比常染色体受到更强的背景选择。最后,我们将我们的方法应用于 1000 基因组计划第三阶段的高覆盖率 Complete Genomics 全基因组数据,并估计了约鲁巴人(63%女性)、欧洲人(84%)、旁遮普人(82%)以及秘鲁人(56%)的女性偏倚,以及汉族南方人(45%)的男性偏倚。我们的方法还根据欧洲人的数据确定了一个源于非洲的男性偏倚移民(20%女性)。我们的结果表明,对种群规模变化进行建模对于准确估计性偏参数是必要的。我们的方法提供了对有性物种中性偏特征的深入了解,并且它产生的人口模型可以作为选择测试的更准确的零模型。