Suppr超能文献

心脏骤停生存评分:院外心脏骤停后院内死亡率的预测算法。

The cardiac arrest survival score: A predictive algorithm for in-hospital mortality after out-of-hospital cardiac arrest.

机构信息

Department of Internal Medicine, Division of Cardiology McGovern Medical School at The University of Texas Health Science Center Houston, United States.

Department of Internal Medicine, Division of Cardiology Houston Methodist Hospital, Weill Cornell Medical College, United States.

出版信息

Resuscitation. 2019 Nov;144:46-53. doi: 10.1016/j.resuscitation.2019.09.009. Epub 2019 Sep 17.

Abstract

BACKGROUND

Out-of-hospital cardiac arrest (OHCA) is associated with high mortality. Current methods for predicting mortality post-arrest require data unavailable at the time of initial medical contact. We created and validated a risk prediction model for patients experiencing OHCA who achieved return of spontaneous circulation (ROSC) which relies only on objective information routinely obtained at first medical contact.

METHODS

We performed a retrospective evaluation of 14,892 OHCA patients in a large metropolitan cardiac arrest registry, of which 3952 patients had usable data. This population was divided into a derivation cohort (n = 2,635) and a verification cohort (n = 1,317) in a 2:1 ratio. Backward stepwise logistic regression was used to identify baseline factors independently associated with death after sustained ROSC in the derivation cohort. The cardiac arrest survival score (CASS) was created from the model and its association with in-hospital mortality was examined in both the derivation and verification cohorts.

RESULTS

Baseline characteristics of the derivation and verification cohorts were not different. The final CASS model included age >75 years (odds ratio [OR] = 1.61, confidence interval [CI][1.30-1.99], p < 0.001), unwitnessed arrest (OR = 1.95, CI[1.58-2.40], p < 0.001), home arrest (OR = 1.28, CI[1.07-1.53], p = 0.008), absence of bystander CPR (OR = 1.35, CI[1.12-1.64], p = 0.003), and non-shockable initial rhythm (OR = 3.81, CI[3.19-4.56], p < 0.001). The area under the curve for the model derivation and model verification cohorts were 0.7172 and 0.7081, respectively.

CONCLUSION

CASS accurately predicts mortality in OHCA patients. The model uses only binary, objective clinical data routinely obtained at first medical contact. Early risk stratification may allow identification of more patients in whom timely and aggressive invasive management may improve outcomes.

摘要

背景

院外心脏骤停(OHCA)与高死亡率相关。目前用于预测心脏骤停后死亡率的方法需要在初始医疗接触时无法获得的数据。我们创建并验证了一种仅依赖于首次医疗接触时常规获得的客观信息的 OHCA 患者自主循环恢复(ROSC)后死亡率的风险预测模型。

方法

我们对一个大型都市心脏骤停登记处的 14892 名 OHCA 患者进行了回顾性评估,其中 3952 名患者有可用数据。该人群以 2:1 的比例分为推导队列(n=2635)和验证队列(n=1317)。使用向后逐步逻辑回归确定推导队列中与持续 ROSC 后死亡独立相关的基线因素。从模型中创建心脏骤停生存评分(CASS),并在推导和验证队列中检查其与院内死亡率的关系。

结果

推导和验证队列的基线特征无差异。最终的 CASS 模型包括年龄>75 岁(比值比[OR] = 1.61,置信区间[CI][1.30-1.99],p < 0.001)、无人见证的骤停(OR = 1.95,CI[1.58-2.40],p < 0.001)、家庭骤停(OR = 1.28,CI[1.07-1.53],p = 0.008)、无旁观者心肺复苏(OR = 1.35,CI[1.12-1.64],p = 0.003)和非除颤性初始节律(OR = 3.81,CI[3.19-4.56],p < 0.001)。模型推导和模型验证队列的曲线下面积分别为 0.7172 和 0.7081。

结论

CASS 准确预测 OHCA 患者的死亡率。该模型仅使用首次医疗接触时常规获得的二进制客观临床数据。早期风险分层可能有助于识别更多患者,及时积极的侵袭性治疗可能改善预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验