Suppr超能文献

体外膜肺氧合(ECMO)下心肺复苏(CPR)开始时间和 CPR 到体外心肺复苏(ECPR)间隔对患者预后的预测作用:一项单中心回顾性观察研究。

Prognostic effects of cardiopulmonary resuscitation (CPR) start time and the interval between CPR to extracorporeal cardiopulmonary resuscitation (ECPR) on patient outcomes under extracorporeal membrane oxygenation (ECMO): a single-center, retrospective observational study.

机构信息

Trauma research center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Medical Intensive Care Unit, Hamad General Hospital, Doha, Qatar.

出版信息

BMC Emerg Med. 2024 Mar 5;24(1):36. doi: 10.1186/s12873-023-00905-8.

Abstract

BACKGROUND

The impact of the chronological sequence of events, including cardiac arrest (CA), initial cardiopulmonary resuscitation (CPR), return of spontaneous circulation (ROSC), and extracorporeal cardiopulmonary resuscitation (ECPR) implementation, on clinical outcomes in patients with both out-of-hospital cardiac arrest (OHCA) and in-hospital cardiac arrest (IHCA), is still not clear. The aim of this study was to investigate the prognostic effects of the time interval from collapse to start of CPR (no-flow time, NFT) and the time interval from start of CPR to implementation of ECPR (low-flow time, LFT) on patient outcomes under Extracorporeal Membrane Oxygenation (ECMO).

METHODS

This single-center, retrospective observational study was conducted on 48 patients with OHCA or IHCA who underwent ECMO at Hamad General Hospital (HGH), the tertiary governmental hospital of Qatar, between February 2016 and March 2020. We investigated the impact of prognostic factors such as NFT and LFT on various clinical outcomes following cardiac arrest, including 24-hour survival, 28-day survival, CPR duration, ECMO length of stay (LOS), ICU LOS, hospital LOS, disability (assessed using the modified Rankin Scale, mRS), and neurological status (evaluated based on the Cerebral Performance Category, CPC) at 28 days after the CA.

RESULTS

The results of the adjusted logistic regression analysis showed that a longer NFT was associated with unfavorable clinical outcomes. These outcomes included longer CPR duration (OR: 1.779, 95%CI: 1.218-2.605, P = 0.034) and decreased survival rates for ECMO at 24 h (OR: 0.561, 95%CI: 0.183-0.903, P = 0.009) and 28 days (OR: 0.498, 95%CI: 0.106-0.802, P = 0.011). Additionally, a longer LFT was found to be associated only with a higher probability of prolonged CPR (OR: 1.818, 95%CI: 1.332-3.312, P = 0.006). However, there was no statistically significant connection between either the NFT or the LFT and the improvement of disability or neurologically favorable survival after 28 days of cardiac arrest.

CONCLUSIONS

Based on our findings, it has been determined that the NFT is a more effective predictor than the LFT in assessing clinical outcomes for patients with OHCA or IHCA who underwent ECMO. This understanding of their distinct predictive abilities enables medical professionals to identify high-risk patients more accurately and customize their interventions accordingly.

摘要

背景

心脏骤停(CA)、初始心肺复苏(CPR)、自主循环恢复(ROSC)和体外心肺复苏(ECPR)实施的时间顺序对院外心脏骤停(OHCA)和院内心脏骤停(IHCA)患者临床结局的影响尚不清楚。本研究旨在探讨从瘫倒到开始心肺复苏(无血流时间,NFT)的时间间隔和从开始心肺复苏到实施 ECPR(低血流时间,LFT)的时间间隔对 Extracorporeal Membrane Oxygenation(ECMO)下患者预后的预测作用。

方法

这是一项在卡塔尔政府医院哈马德综合医院(HGH)进行的单中心、回顾性观察性研究,纳入了 2016 年 2 月至 2020 年 3 月期间接受 ECMO 的 48 例 OHCA 或 IHCA 患者。我们研究了 NFT 和 LFT 等预后因素对心脏骤停后各种临床结局的影响,包括 24 小时生存率、28 天生存率、CPR 持续时间、ECMO 住院时间(LOS)、重症监护病房 LOS、医院 LOS、残疾(采用改良 Rankin 量表,mRS 评估)和 28 天后的神经状态(基于脑功能分类,CPC)。

结果

调整后的逻辑回归分析结果表明,NFT 较长与临床结局不良相关。这些结局包括 CPR 持续时间更长(OR:1.779,95%CI:1.218-2.605,P=0.034)和 24 小时(OR:0.561,95%CI:0.183-0.903,P=0.009)和 28 天(OR:0.498,95%CI:0.106-0.802,P=0.011)时 ECMO 生存率降低。此外,LFT 较长仅与 CPR 延长的可能性增加相关(OR:1.818,95%CI:1.332-3.312,P=0.006)。然而,NFT 或 LFT 与 28 天后残疾改善或神经功能良好生存之间均无统计学意义的联系。

结论

根据我们的发现,NFT 比 LFT 更能有效预测接受 ECMO 的 OHCA 或 IHCA 患者的临床结局。了解它们的不同预测能力使医务人员能够更准确地识别高危患者,并相应地调整干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0862/10913290/642ab2876460/12873_2023_905_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验