Suppr超能文献

基于深度神经网络和数据增强方法的可穿戴式头戴设备中离轴虹膜分割。

Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets.

机构信息

Department of Electronic Engineering, College of Engineering, National University of Ireland Galway, University Road, Galway, Ireland.

imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium.

出版信息

Neural Netw. 2020 Jan;121:101-121. doi: 10.1016/j.neunet.2019.07.020. Epub 2019 Aug 1.

Abstract

A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favourably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets.

摘要

提出了一种数据增强方法,并将其应用于生成大量离轴虹膜区域的数据集,并训练一个低复杂度的深度神经网络。尽管该网络复杂度低,但它在对具有挑战性的离轴眼片的虹膜区域分割中实现了高精度。有趣的是,该网络还在常规的、正面的虹膜区域分割中表现出了很高的性能,与复杂度明显更高的最新技术相比具有优势。由于其复杂度较低,该网络非常适合部署在嵌入式应用中,如增强现实和混合现实耳机。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验