Suppr超能文献

基于 Mask R-CNN 的无人机多分辨率图像分割的橄榄树生物量。

Olive Tree Biovolume from UAV Multi-Resolution Image Segmentation with Mask R-CNN.

机构信息

Laboratory of Deep Learning, Siberian Federal University, 660074 Krasnoyarsk, Russia.

Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia.

出版信息

Sensors (Basel). 2021 Feb 25;21(5):1617. doi: 10.3390/s21051617.

Abstract

Olive tree growing is an important economic activity in many countries, mostly in the Mediterranean Basin, Argentina, Chile, Australia, and California. Although recent intensification techniques organize olive groves in hedgerows, most olive groves are rainfed and the trees are scattered (as in Spain and Italy, which account for 50% of the world's olive oil production). Accurate measurement of trees biovolume is a first step to monitor their performance in olive production and health. In this work, we use one of the most accurate deep learning instance segmentation methods (Mask R-CNN) and unmanned aerial vehicles (UAV) images for olive tree crown and shadow segmentation (OTCS) to further estimate the biovolume of individual trees. We evaluated our approach on images with different spectral bands (red, green, blue, and near infrared) and vegetation indices (normalized difference vegetation index-NDVI-and green normalized difference vegetation index-GNDVI). The performance of red-green-blue (RGB) images were assessed at two spatial resolutions 3 cm/pixel and 13 cm/pixel, while NDVI and GNDV images were only at 13 cm/pixel. All trained Mask R-CNN-based models showed high performance in the tree crown segmentation, particularly when using the fusion of all dataset in GNDVI and NDVI (F1-measure from 95% to 98%). The comparison in a subset of trees of our estimated biovolume with ground truth measurements showed an average accuracy of 82%. Our results support the use of NDVI and GNDVI spectral indices for the accurate estimation of the biovolume of scattered trees, such as olive trees, in UAV images.

摘要

油橄榄树的种植是许多国家(主要是在地中海盆地、阿根廷、智利、澳大利亚和加利福尼亚)的一项重要经济活动。尽管最近的集约化技术将橄榄园组织成树篱,但大多数橄榄园都是靠雨水灌溉,树木分散(如西班牙和意大利,它们占世界橄榄油产量的 50%)。准确测量树木的生物量是监测其在橄榄生产和健康方面表现的第一步。在这项工作中,我们使用最准确的深度学习实例分割方法之一(Mask R-CNN)和无人机(UAV)图像来进行橄榄树冠和阴影分割(OTCS),以进一步估计单株树木的生物量。我们在具有不同光谱波段(红、绿、蓝和近红外)和植被指数(归一化差异植被指数-NDVI-和绿色归一化差异植被指数-GNDVI)的图像上评估了我们的方法。红-绿-蓝(RGB)图像的性能在两个空间分辨率 3 厘米/像素和 13 厘米/像素下进行评估,而 NDVI 和 GNDV 图像仅在 13 厘米/像素下进行评估。所有基于 Mask R-CNN 训练的模型在树冠分割方面表现出很高的性能,特别是在使用 GNDVI 和 NDVI 中所有数据集融合时(F1 测量值从 95%到 98%)。我们估计的生物量与地面实测值在部分树木中的比较显示平均精度为 82%。我们的结果支持在无人机图像中使用 NDVI 和 GNDVI 光谱指数来准确估计分散树木(如油橄榄树)的生物量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a04e/7956790/663a364ca39a/sensors-21-01617-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验