Suppr超能文献

GTP结合型RHO活性的纳米抗体生物传感器的筛选与表征

Selection and Characterization of a Nanobody Biosensor of GTP-Bound RHO Activities.

作者信息

Keller Laura, Bery Nicolas, Tardy Claudine, Ligat Laetitia, Favre Gilles, Rabbitts Terence H, Olichon Aurélien

机构信息

Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France.

Institut Claudius Regaud (ICR), Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Laboratoire de Biologie Médicale Oncologique (LBMO), 31059 Toulouse, France.

出版信息

Antibodies (Basel). 2019 Jan 9;8(1):8. doi: 10.3390/antib8010008.

Abstract

RHO (Ras HOmologous) GTPases are molecular switches that activate, in their state bound to Guanosine triphosphate (GTP), key signaling pathways, which involve actin cytoskeleton dynamics. Previously, we selected the nanobody RH12, from a synthetic phage display library, which binds the GTP-bound active conformation of RHOA (Ras Homologous family member A). However, when expressed as an intracellular antibody, its blocking effect on RHO signaling led to a loss of actin fibers, which in turn affected cell shape and cell survival. Here, in order to engineer an intracellular biosensor of RHOA-GTP activation, we screened the same phage nanobody library and identified another RHO-GTP selective intracellular nanobody, but with no apparent toxicity. The recombinant RH57 nanobody displays high affinity towards GTP-bound RHOA/B/C subgroup of small GTPases in vitro. Intracellular expression of the RH57 allowed selective co-precipitation with the GTP-bound state of the endogenous RHOA subfamily. When expressed as a fluorescent fusion protein, the chromobody GFP-RH57 was localized to the inner plasma membrane upon stimulation of the activation of endogenous RHO. Finally, the RH57 nanobody was used to establish a BRET-based biosensor (Bioluminescence Resonance Energy Transfer) of RHO activation. The dynamic range of the BRET signal could potentially offer new opportunities to develop cell-based screening of RHOA subfamily activation modulators.

摘要

RHO(Ras同源)GTP酶是分子开关,在其与鸟苷三磷酸(GTP)结合的状态下激活关键信号通路,这些通路涉及肌动蛋白细胞骨架动力学。此前,我们从合成噬菌体展示文库中筛选出纳米抗体RH12,它能结合RHOA(Ras同源家族成员A)的GTP结合活性构象。然而,当作为细胞内抗体表达时,其对RHO信号的阻断作用导致肌动蛋白纤维丢失,进而影响细胞形状和细胞存活。在此,为了构建一种RHOA - GTP激活的细胞内生物传感器,我们筛选了同一个噬菌体纳米抗体文库,鉴定出另一种RHO - GTP选择性细胞内纳米抗体,但无明显毒性。重组纳米抗体RH57在体外对小GTP酶的GTP结合型RHOA/B/C亚组显示出高亲和力。RH57的细胞内表达允许与内源性RHOA亚家族的GTP结合状态进行选择性共沉淀。当作为荧光融合蛋白表达时,在刺激内源性RHO激活后,染色体体GFP - RH57定位于质膜内侧。最后,利用纳米抗体RH57建立了基于生物发光共振能量转移(BRET)的RHO激活生物传感器。BRET信号的动态范围可能为开发基于细胞的RHOA亚家族激活调节剂筛选提供新机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e98/6640709/770798154f5a/antibodies-08-00008-g001.jpg

相似文献

1
Selection and Characterization of a Nanobody Biosensor of GTP-Bound RHO Activities.
Antibodies (Basel). 2019 Jan 9;8(1):8. doi: 10.3390/antib8010008.
2
Structural insights into the binding of nanobody Rh57 to active RhoA-GTP.
Biochem Biophys Res Commun. 2022 Aug 6;616:122-128. doi: 10.1016/j.bbrc.2022.05.084. Epub 2022 May 29.
3
4
Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection.
BMC Biotechnol. 2008 Mar 31;8:34. doi: 10.1186/1472-6750-8-34.
6
A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular RHOB GTP-Bound Conformation.
Cell Chem Biol. 2019 Nov 21;26(11):1544-1558.e6. doi: 10.1016/j.chembiol.2019.08.009. Epub 2019 Sep 12.
7
Visualizing the subcellular localization of RHOB-GTP and GTPase-Effector complexes using a split-GFP/nanobody labelling assay.
Eur J Cell Biol. 2023 Dec;102(4):151355. doi: 10.1016/j.ejcb.2023.151355. Epub 2023 Aug 21.
8
A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells.
J Biol Chem. 2003 Nov 7;278(45):44617-25. doi: 10.1074/jbc.M308929200. Epub 2003 Aug 25.
9
Regulation of Leukaemia Associated Rho GEF (LARG/ARHGEF12).
Small GTPases. 2022 Jan;13(1):196-204. doi: 10.1080/21541248.2021.1951590. Epub 2021 Jul 25.
10
Structure of an inactive conformation of GTP-bound RhoA GTPase.
Structure. 2021 Jun 3;29(6):553-563.e5. doi: 10.1016/j.str.2020.12.015. Epub 2021 Jan 25.

引用本文的文献

1
Nanobodies: From Discovery to AI-Driven Design.
Biology (Basel). 2025 May 14;14(5):547. doi: 10.3390/biology14050547.
3
Intracellular VHHs to monitor and modulate GPCR signaling.
Front Endocrinol (Lausanne). 2022 Nov 16;13:1048601. doi: 10.3389/fendo.2022.1048601. eCollection 2022.
4
mNG-tagged fusion proteins and nanobodies to visualize tropomyosins in yeast and mammalian cells.
J Cell Sci. 2022 Sep 15;135(18). doi: 10.1242/jcs.260288. Epub 2022 Sep 23.
5
6
Affimers and nanobodies as molecular probes and their applications in imaging.
J Cell Sci. 2022 Jul 15;135(14). doi: 10.1242/jcs.259168. Epub 2022 Jul 18.
7
Seeing is believing: tools to study the role of Rho GTPases during cytokinesis.
Small GTPases. 2022 Jan;13(1):211-224. doi: 10.1080/21541248.2021.1957384. Epub 2021 Aug 18.
8
Visualizing endogenous Rho activity with an improved localization-based, genetically encoded biosensor.
J Cell Sci. 2021 Sep 1;134(17). doi: 10.1242/jcs.258823. Epub 2021 Sep 8.
10
An Inside Job: Applications of Intracellular Single Domain Antibodies.
Biomolecules. 2020 Dec 12;10(12):1663. doi: 10.3390/biom10121663.

本文引用的文献

3
Regulation of RhoA GTPase and various transcription factors in the RhoA pathway.
J Cell Physiol. 2018 Sep;233(9):6381-6392. doi: 10.1002/jcp.26487. Epub 2018 Mar 25.
8
Rho GTPases: Anti- or pro-neoplastic targets?
Oncogene. 2017 Jun 8;36(23):3213-3222. doi: 10.1038/onc.2016.473. Epub 2016 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验