Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany.
FEBS J. 2020 Mar;287(5):1035-1053. doi: 10.1111/febs.15071. Epub 2019 Oct 10.
The α/β-hydrolase fold family is highly diverse in sequence, structure and biochemical function. To investigate the sequence-structure-function relationships, the Lipase Engineering Database (https://led.biocatnet.de) was updated. Overall, 280 638 protein sequences and 1557 protein structures were analysed. All α/β-hydrolases consist of the catalytically active core domain, but they might also contain additional structural modules, resulting in 12 different architectures: core domain only, additional lids at three different positions, three different caps, additional N- or C-terminal domains and combinations of N- and C-terminal domains with caps and lids respectively. In addition, the α/β-hydrolases were distinguished by their oxyanion hole signature (GX-, GGGX- and Y-types). The N-terminal domains show two different folds, the Rossmann fold or the β-propeller fold. The C-terminal domains show a β-sandwich fold. The N-terminal β-propeller domain and the C-terminal β-sandwich domain are structurally similar to carbohydrate-binding proteins such as lectins. The classification was applied to the newly discovered polyethylene terephthalate (PET)-degrading PETases and MHETases, which are core domain α/β-hydrolases of the GX- and the GGGX-type respectively. To investigate evolutionary relationships, sequence networks were analysed. The degree distribution followed a power law with a scaling exponent γ = 1.4, indicating a highly inhomogeneous network which consists of a few hubs and a large number of less connected sequences. The hub sequences have many functional neighbours and therefore are expected to be robust toward possible deleterious effects of mutations. The cluster size distribution followed a power law with an extrapolated scaling exponent τ = 2.6, which strongly supports the connectedness of the sequence space of α/β-hydrolases. DATABASE: Supporting data about domains from other proteins with structural similarity to the N- or C-terminal domains of α/β-hydrolases are available in Data Repository of the University of Stuttgart (DaRUS) under doi: https://doi.org/10.18419/darus-458.
α/β-水解酶折叠家族在序列、结构和生化功能上具有高度多样性。为了研究序列-结构-功能关系,对 Lipase Engineering Database(https://led.biocatnet.de)进行了更新。总体上,分析了 280638 个蛋白质序列和 1557 个蛋白质结构。所有的 α/β-水解酶都包含催化活性核心结构域,但它们也可能包含额外的结构模块,从而形成 12 种不同的结构:仅核心结构域、在三个不同位置的附加盖、三个不同的帽、附加的 N-或 C-末端结构域以及分别与帽和盖组合的 N-和 C-末端结构域。此外,α/β-水解酶还通过其氧阴离子孔特征(GX-、GGGX-和 Y-型)来区分。N-末端结构域具有两种不同的折叠形式,即 Rossmann 折叠或 β-推进器折叠。C-末端结构域呈现出 β-三明治折叠。N-末端的 β-推进器结构域和 C-末端的 β-三明治结构域在结构上与糖结合蛋白(如凝集素)相似。该分类应用于新发现的聚对苯二甲酸乙二醇酯(PET)降解酶 PETases 和 MHETases,它们分别是 GX-和 GGGX-型的核心结构域 α/β-水解酶。为了研究进化关系,分析了序列网络。度分布遵循幂律,标度指数 γ=1.4,表明网络高度不均匀,由少数枢纽和大量连接较少的序列组成。枢纽序列有许多功能上的邻居,因此预计它们对可能的突变有害影响具有鲁棒性。簇大小分布也遵循幂律,外推标度指数 τ=2.6,这强烈支持了 α/β-水解酶序列空间的连通性。数据库:具有与 α/β-水解酶的 N-或 C-末端结构域结构相似的其他蛋白质的结构域的支持数据可在斯图加特大学的数据库(DaRUS)中获得,网址为:https://doi.org/10.18419/darus-458。