Suppr超能文献

基于自适应卡尔曼滤波的 UWB/Binocular VO 融合算法。

UWB/Binocular VO Fusion Algorithm Based on Adaptive Kalman Filter.

机构信息

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

Science and Technology on Communication Networks Laboratory, Shijiazhuang 050000, China.

出版信息

Sensors (Basel). 2019 Sep 19;19(18):4044. doi: 10.3390/s19184044.

Abstract

Among the existing wireless indoor positioning systems, UWB (ultra-wideband) is one of the most promising solutions. However, the single UWB positioning system is affected by factors such as non-line of sight and multipath, and the navigation accuracy will decrease. In order to make up for the shortcomings of a single UWB positioning system, this paper proposes a scheme based on binocular VO (visual odometer) and UWB sensor fusion. In this paper, the original distance measurement data of UWB and the position information of binocular VO are merged by adaptive Kalman filter, and the structural design of the fusion system and the realization of the fusion algorithm are elaborated. The experimental results show that compared with a single positioning system, the proposed data fusion method can significantly improve the positioning accuracy.

摘要

在现有的无线室内定位系统中,UWB(超宽带)是最有前途的解决方案之一。然而,单一的 UWB 定位系统受到非视距和多径等因素的影响,导航精度会下降。为了弥补单一 UWB 定位系统的不足,本文提出了一种基于双目视觉里程计(VO)和 UWB 传感器融合的方案。本文通过自适应卡尔曼滤波器融合 UWB 的原始测距数据和双目视觉里程计的位置信息,阐述了融合系统的结构设计和融合算法的实现。实验结果表明,与单一的定位系统相比,所提出的数据融合方法可以显著提高定位精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8aaa/6767684/f2f1815bd04b/sensors-19-04044-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验