College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
Science and Technology on Communication Networks Laboratory, Shijiazhuang 050000, China.
Sensors (Basel). 2019 Sep 19;19(18):4044. doi: 10.3390/s19184044.
Among the existing wireless indoor positioning systems, UWB (ultra-wideband) is one of the most promising solutions. However, the single UWB positioning system is affected by factors such as non-line of sight and multipath, and the navigation accuracy will decrease. In order to make up for the shortcomings of a single UWB positioning system, this paper proposes a scheme based on binocular VO (visual odometer) and UWB sensor fusion. In this paper, the original distance measurement data of UWB and the position information of binocular VO are merged by adaptive Kalman filter, and the structural design of the fusion system and the realization of the fusion algorithm are elaborated. The experimental results show that compared with a single positioning system, the proposed data fusion method can significantly improve the positioning accuracy.
在现有的无线室内定位系统中,UWB(超宽带)是最有前途的解决方案之一。然而,单一的 UWB 定位系统受到非视距和多径等因素的影响,导航精度会下降。为了弥补单一 UWB 定位系统的不足,本文提出了一种基于双目视觉里程计(VO)和 UWB 传感器融合的方案。本文通过自适应卡尔曼滤波器融合 UWB 的原始测距数据和双目视觉里程计的位置信息,阐述了融合系统的结构设计和融合算法的实现。实验结果表明,与单一的定位系统相比,所提出的数据融合方法可以显著提高定位精度。