Suppr超能文献

非晶硅上溅射沉积超薄 Pd 层过程中的界面硅化物形成和应力演变

Interfacial Silicide Formation and Stress Evolution during Sputter Deposition of Ultrathin Pd Layers on a-Si.

机构信息

Institut PPrime, UPR 3346, Université de Poitiers-CNRS-ENSMA , Chasseneuil-Futuroscope 86960 , France.

Synchrotron SOLEIL , Gif sur Yvette 91192 , France.

出版信息

ACS Appl Mater Interfaces. 2019 Oct 23;11(42):39315-39323. doi: 10.1021/acsami.9b11492. Epub 2019 Oct 8.

Abstract

Synchrotron experiments combining real-time stress, X-ray diffraction, and X-ray reflectivity measurements, complemented by in situ electron diffraction and photon electron spectroscopy measurements, revealed a detailed picture of the interfacial silicide formation during deposition of ultrathin Pd layers on amorphous silicon. Initially, an amorphous PdSi interlayer is formed. At a critical thickness of 2.3 nm, this layer crystallizes and the resulting volume reduction leads to a tensile stress buildup. The [111] textured PdSi layer continues to grow up to a thickness of ≈3.7 nm and is subsequently covered by a Pd layer with [111] texture. The tensile stress relaxes already during PdSi growth. A comparison between the texture formation on SiO and a-Si shows that the silicide layer serves as a template for the Pd layer, resulting in a surprisingly narrow texture of only 3° after 800 s Pd deposition. The texture formation of Pd and PdSi can be explained by the low lattice mismatch between Pd(111) and PdSi(111). The combined experimental results indicate a similar interface formation mechanism for Pd on a-Si and c-Si, whereas the resulting silicide texture depends on the Si surface. A new strain relaxation mechanism via grain boundary diffusion is proposed, taking into account the influence of the thickness-dependent crystallization on the material transport through the silicide layer. In combination with the small lattice mismatch, the grain boundary diffusion facilitates the growth of Pd clusters, explaining thus the well-defined thickness of the interfacial silicide layer, which limits the miniaturization of self-organized silicide layers for microelectronic devices.

摘要

通过同步辐射实验结合实时应力、X 射线衍射和 X 射线反射率测量,并辅以原位电子衍射和光子电子能谱测量,揭示了在非晶硅上沉积超薄 Pd 层过程中界面硅化物形成的详细情况。最初形成了非晶态 PdSi 中间层。在 2.3nm 的临界厚度下,该层结晶,导致体积减小,从而产生拉伸应力。具有[111]织构的 PdSi 层继续生长,直到厚度约为 3.7nm,随后被具有[111]织构的 Pd 层覆盖。在 PdSi 生长过程中,拉伸应力已经得到缓解。在 SiO 和非晶硅上的织构形成之间进行比较表明,硅化物层作为 Pd 层的模板,导致在 800s Pd 沉积后,织构仅为 3°,这令人惊讶地狭窄。Pd 和 PdSi 的织构形成可以通过 Pd(111)和 PdSi(111)之间的低晶格失配来解释。综合实验结果表明,Pd 在非晶硅和 c-Si 上具有相似的界面形成机制,而形成的硅化物织构取决于 Si 表面。提出了一种新的应变松弛机制,即晶界扩散,考虑到厚度相关的结晶对材料通过硅化物层的传输的影响。结合小的晶格失配,晶界扩散促进了 Pd 团簇的生长,从而解释了界面硅化物层的良好定义厚度,这限制了自组织硅化物层在微电子器件中的小型化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验