Nedelcu Ileana, van de Kruijs Robbert W E, Yakshin Andrey E, Bijkerk Fred
FOM-Institute for Plasma Physics Rijnhuizen, P.O. Box. 1207, 3430 BE Nieuwegein, The Netherlands.
Appl Opt. 2009 Jan 10;48(2):155-60. doi: 10.1364/ao.48.000155.
The growth behavior of B(4)C interlayers deposited at the interfaces of Mo/Si multilayers was investigated using x-ray photoemission spectroscopy, x-ray reflectivity, and x-ray diffraction measurements. We report an asymmetry in the formation of B(4)C at the B(4)C-on-Mo interface compared to the B(4)C-on-Si interface. X-ray photoelectron spectroscopy (XPS) depth profiling shows that for B(4)C-on-Mo the formed stoichiometry is close to expectation (4:1 ratio), while for B(4)C-on-Si it is observed that carbon diffuses from the B(4)C interfaces into the multilayer, resulting in nonstochiometric growth (>4:1). As a result, there is a discrepancy in the optical response near 13.5 nm wavelength, where B(4)C-on-Mo behaves according to model simulations, while B(4)C-on-Si does not. The as-deposited off-stoichiometric B(4)C-on-Si interface also explains why these interfaces show poor barrier properties against temperature induced interdiffusion. We show that the stoichiometry of B(4)C at the Mo-Si interfaces is connected to the structure of the layers onto which B(4)C is grown. Because of enhanced diffusion into the amorphous Si surface, we suggest that deposited boron and carbon atoms form Si(X)B(Y) and Si(X)C(Y) compounds. The low formation enthalpy of Si(X)C(Y) ensures C depletion of any B(X)C(Y) interlayer. Only after a saturated interfacial layer is formed, does further deposition of boron and carbon atoms result in actual B(4)C formation. In contrast to the off-stoichiometric B(4)C growth on top of Si, B(4)C grown on top of Mo retains the correct stoichiometry because of the higher formation enthalpies for Mo(X)B(Y) and Mo(X)C(Y) formation and the limited diffusion depth into the (poly)-crystalline Mo surface.
利用X射线光电子能谱、X射线反射率和X射线衍射测量,研究了沉积在Mo/Si多层膜界面处的B(4)C中间层的生长行为。我们报告了与B(4)C-Si界面相比,B(4)C-Mo界面处B(4)C形成的不对称性。X射线光电子能谱(XPS)深度剖析表明,对于B(4)C-Mo,形成的化学计量比接近预期(4:1比例),而对于B(4)C-Si,观察到碳从B(4)C界面扩散到多层膜中,导致非化学计量生长(>4:1)。结果,在13.5nm波长附近的光学响应存在差异,其中B(4)C-Mo的行为符合模型模拟,而B(4)C-Si则不然。沉积的非化学计量的B(4)C-Si界面也解释了为什么这些界面在抵抗温度诱导的相互扩散方面表现出较差的阻挡性能。我们表明,Mo-Si界面处B(4)C的化学计量比与B(4)C生长的层结构有关。由于增强了向非晶Si表面的扩散,我们认为沉积的硼和碳原子形成了Si(X)B(Y)和Si(X)C(Y)化合物。Si(X)C(Y)的低形成焓确保了任何B(X)C(Y)中间层的碳耗尽。只有在形成饱和界面层后,硼和碳原子的进一步沉积才会导致实际的B(4)C形成。与在Si顶部生长的非化学计量的B(4)C不同,在Mo顶部生长的B(4)C由于Mo(X)B(Y)和Mo(X)C(Y)形成的较高形成焓以及向(多)晶Mo表面的有限扩散深度而保持正确的化学计量比。