Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX.
Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX.
J Lipid Res. 2020 Feb;61(2):192-204. doi: 10.1194/jlr.RA119000317. Epub 2019 Sep 23.
Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and Δ desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to -adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations.-.
原始固醇的演化在化石记录的解释中起着重要作用,并为因线虫感染而导致的人类疾病提供了潜在的治疗途径。认识到 C4-甲基甾醇产物[8(14)-羊毛甾醇]可以在细菌中合成,而 C4-甲基胆甾醇产物(豆甾醇)可以在甲藻中合成,并作为甾烷生物标志物在古代沉积岩中保存,这是真核固醇演化的关键。在这方面,线虫被提出通过一种可能涉及固醇 C4 甲基化的次生代谢途径将膳食胆固醇转化为 8(14)-羊毛甾醇,该途径类似于霍烷类物质的 C2 甲基化(根基型机制)或固醇的 C24 甲基化(碳正离子型机制)。在这里,我们描述了在 中存在的二分法胆固醇代谢途径,该途径在两条不同的路径中生成 3-氧代固醇中间体,分别生成羊毛甾醇(4-甲基胆甾醇)和 8(14)-羊毛甾醇(4-甲基麦角甾醇)。我们发现了替代的 C3-固醇氧化和Δ去饱和步骤,这些步骤调节了固醇通量,从而产生分支代谢物网络,而羊毛甾醇/8(14)-羊毛甾醇的形成依赖于固醇 C4α-甲基转移酶(4-SMT),该酶需要 3-氧代固醇底物,并催化一种新发现的 3-酮-烯醇互变异构机制,该机制与依赖于 -腺苷甲硫氨酸的甲基化有关。尽管氨基酸序列同一性很小,但在 4-SMT 和 24-SMT 酶中保守的特异性底物结合结构域表明,在甲基甾醇的演化中,它们与一个共同的原始祖先发生了分歧。这些结果的结合为甾醇多样性提供了进化线索,并指出了介导谱系特异性适应的隐蔽 C4-甲基甾体生成途径的趋同。-。