Kempkes S N, Slot M R, van den Broeke J J, Capiod P, Benalcazar W A, Vanmaekelbergh D, Bercioux D, Swart I, Morais Smith C
Institute for Theoretical Physics, Utrecht University, Utrecht, the Netherlands.
Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
Nat Mater. 2019 Dec;18(12):1292-1297. doi: 10.1038/s41563-019-0483-4. Epub 2019 Sep 23.
Quantum simulators are essential tools for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices have led the field so far, but the basis for electronic quantum simulators is now being developed. Here, we experimentally realize an electronic higher-order topological insulator (HOTI). We create a breathing kagome lattice by manipulating carbon monoxide molecules on a Cu(111) surface using a scanning tunnelling microscope. We engineer alternating weak and strong bonds to show that a topological state emerges at the corner of the non-trivial configuration, but is absent in the trivial one. Different from conventional topological insulators, the topological state has two dimensions less than the bulk, denoting a HOTI. The corner mode is protected by a generalized chiral symmetry, which leads to a particular robustness against perturbations. Our versatile approach to designing artificial lattices holds promise for revealing unexpected quantum phases of matter.
量子模拟器是理解复杂量子材料的重要工具。到目前为止,基于光学晶格中的超冷原子和光子器件的平台引领了该领域,但电子量子模拟器的基础目前正在开发中。在这里,我们通过实验实现了一种电子高阶拓扑绝缘体(HOTI)。我们使用扫描隧道显微镜在Cu(111)表面操纵一氧化碳分子,创建了一个呼吸式 Kagome 晶格。我们设计了交替的弱键和强键,以表明在非平凡构型的角落出现了拓扑态,但在平凡构型中不存在。与传统拓扑绝缘体不同,该拓扑态的维度比体相少二维,这意味着是一个高阶拓扑绝缘体。角模式由广义手征对称性保护,这导致了对微扰的特殊鲁棒性。我们设计人工晶格的通用方法有望揭示意想不到的量子物相。