Suppr超能文献

超导衬底上的波函数工程:手性汤川-志田-卢西诺夫分子

Wave Function Engineering on Superconducting Substrates: Chiral Yu-Shiba-Rusinov Molecules.

作者信息

Rütten Lisa M, Schmid Harald, Liebhaber Eva, Franceschi Giada, Yazdani Ali, Reecht Gaël, Rossnagel Kai, von Oppen Felix, Franke Katharina J

机构信息

Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.

Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.

出版信息

ACS Nano. 2024 Nov 5;18(44):30798-30804. doi: 10.1021/acsnano.4c10998. Epub 2024 Oct 25.

Abstract

Magnetic adatoms on superconductors give rise to Yu-Shiba-Rusinov (YSR) states that hold considerable interest for the design of topological superconductivity. Here, we show that YSR states are also an ideal platform to engineer structures with intricate wave function symmetries. We assemble structures of iron atoms on the quasi-two-dimensional superconductor 2-NbSe. The Yu-Shiba-Rusinov wave functions of individual atoms extend over several nanometers enabling hybridization even at large adatom spacing. We show that the substrate can be exploited to deliberately break symmetries of the adatom structure leading to hybridized YSR states exhibiting symmetries that cannot be found in orbitals of iso-structural planar molecules in the gas phase. We exploit this potential by designing chiral YSR wave functions of triangular adatom structures. Our results significantly expand the range of interesting quantum states that can be engineered using arrays of magnetic adatoms on superconductors.

摘要

超导体上的磁性吸附原子会产生汤浅-芝-鲁西诺夫(YSR)态,这对拓扑超导性的设计具有重要意义。在此,我们表明YSR态也是构建具有复杂波函数对称性结构的理想平台。我们在准二维超导体2-NbSe上组装铁原子结构。单个原子的YSR波函数可延伸至几纳米,即使在吸附原子间距较大时也能实现杂化。我们表明,可以利用衬底有意打破吸附原子结构的对称性,从而产生具有气相中等结构平面分子轨道中所没有的对称性的杂化YSR态。我们通过设计三角形吸附原子结构的手性YSR波函数来利用这一潜力。我们的结果显著扩展了利用超导体上磁性吸附原子阵列可构建的有趣量子态的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3202/11544926/40472ca21173/nn4c10998_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验