Suppr超能文献

手性在人类激酶组中提高成药性的探索。

The Exploration of Chirality for Improved Druggability within the Human Kinome.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States.

出版信息

J Med Chem. 2020 Jan 23;63(2):441-469. doi: 10.1021/acs.jmedchem.9b00640. Epub 2019 Oct 9.

Abstract

Chirality is important in drug discovery because stereoselective drugs can ameliorate therapeutic difficulties including adverse toxicity and poor pharmacokinetic profiles. The human kinome, a major druggable enzyme class has been exploited to treat a wide range of diseases. However, many kinase inhibitors are planar and overlap in chemical space, which leads to selectivity and toxicity issues. By exploring chirality within the kinome, a new iteration of kinase inhibitors is being developed to better utilize the three-dimensional nature of the kinase active site. Exploration into novel chemical space, in turn, will also improve drug solubility and pharmacokinetic profiles. This perspective explores the role of chirality to improve kinome druggability and will serve as a resource for pioneering kinase inhibitor development to address current therapeutic needs.

摘要

手性在药物发现中很重要,因为立体选择性药物可以改善治疗困难,包括不良反应毒性和差的药代动力学特征。人类激酶组,一个主要的可成药酶类,已经被开发用于治疗广泛的疾病。然而,许多激酶抑制剂是平面的,在化学空间中重叠,这导致了选择性和毒性问题。通过在激酶组中探索手性,正在开发新一代的激酶抑制剂,以更好地利用激酶活性位点的三维性质。反过来,对新化学空间的探索也将提高药物的溶解度和药代动力学特征。本文探讨了手性在提高激酶组可成药性方面的作用,并将为开拓性激酶抑制剂开发提供资源,以满足当前的治疗需求。

相似文献

1
The Exploration of Chirality for Improved Druggability within the Human Kinome.
J Med Chem. 2020 Jan 23;63(2):441-469. doi: 10.1021/acs.jmedchem.9b00640. Epub 2019 Oct 9.
2
Pocketome of human kinases: prioritizing the ATP binding sites of (yet) untapped protein kinases for drug discovery.
J Chem Inf Model. 2015 Mar 23;55(3):538-49. doi: 10.1021/ci500624s. Epub 2015 Jan 20.
4
Assessing Darkness of the Human Kinome from a Medicinal Chemistry Perspective.
J Med Chem. 2024 Oct 10;67(19):17919-17928. doi: 10.1021/acs.jmedchem.4c01992. Epub 2024 Sep 25.
5
Utilization of Supervised Machine Learning to Understand Kinase Inhibitor Toxophore Profiles.
Int J Mol Sci. 2023 Mar 7;24(6):5088. doi: 10.3390/ijms24065088.
6
Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead Identification Studies.
Cell Chem Biol. 2019 Nov 21;26(11):1608-1622.e6. doi: 10.1016/j.chembiol.2019.08.007. Epub 2019 Sep 11.
8
Strategy toward Kinase-Selective Drug Discovery.
J Chem Theory Comput. 2023 Mar 14;19(5):1615-1628. doi: 10.1021/acs.jctc.2c01171. Epub 2023 Feb 23.
9
KinMap: a web-based tool for interactive navigation through human kinome data.
BMC Bioinformatics. 2017 Jan 5;18(1):16. doi: 10.1186/s12859-016-1433-7.
10
Unexpected off-targets and paradoxical pathway activation by kinase inhibitors.
ACS Chem Biol. 2015 Jan 16;10(1):234-45. doi: 10.1021/cb500886n. Epub 2015 Jan 2.

引用本文的文献

2
Kinase inhibitor macrocycles: a perspective on limiting conformational flexibility when targeting the kinome with small molecules.
RSC Med Chem. 2023 Dec 12;15(2):399-415. doi: 10.1039/d3md00457k. eCollection 2024 Feb 21.
5
Recent Research Progress of Chiral Small Molecular Antitumor-Targeted Drugs Approved by the FDA From 2011 to 2019.
Front Oncol. 2021 Dec 17;11:785855. doi: 10.3389/fonc.2021.785855. eCollection 2021.
6
Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery.
Comput Struct Biotechnol J. 2021;19:4684-4701. doi: 10.1016/j.csbj.2021.08.029. Epub 2021 Aug 19.
7
Pyrazoloadenine Inhibitors of the RET Lung Cancer Oncoprotein Discovered by a Fragment Optimization Approach.
ChemMedChem. 2021 May 18;16(10):1605-1608. doi: 10.1002/cmdc.202100013. Epub 2021 Mar 8.
9
Biological Properties of New Chiral 2-Methyl-5,6,7,8-tetrahydroquinolin-8-amine-based Compounds.
Molecules. 2020 Nov 27;25(23):5561. doi: 10.3390/molecules25235561.
10
Pyrrolo[2,3-d]pyrimidine derivatives as inhibitors of RET: Design, synthesis and biological evaluation.
Eur J Med Chem. 2020 Nov 15;206:112691. doi: 10.1016/j.ejmech.2020.112691. Epub 2020 Aug 6.

本文引用的文献

1
Class 1 PI3K Clinical Candidates and Recent Inhibitor Design Strategies: A Medicinal Chemistry Perspective.
J Med Chem. 2019 May 23;62(10):4815-4850. doi: 10.1021/acs.jmedchem.8b01492. Epub 2018 Dec 24.
2
Discovery of a Novel Inhaled PI3Kδ Inhibitor for the Treatment of Respiratory Diseases.
J Med Chem. 2018 Nov 8;61(21):9551-9567. doi: 10.1021/acs.jmedchem.8b00873. Epub 2018 Oct 29.
3
A Dual Inhibition, a Better Solution: Development of a JAK1/TYK2 inhibitor.
J Med Chem. 2018 Oct 11;61(19):8594-8596. doi: 10.1021/acs.jmedchem.8b01397. Epub 2018 Sep 25.
5
Cobimetinib (GDC-0973, XL518).
Recent Results Cancer Res. 2018;211:177-186. doi: 10.1007/978-3-319-91442-8_12.
6
Atropisomerism in medicinal chemistry: challenges and opportunities.
Future Med Chem. 2018 Feb;10(4):409-422. doi: 10.4155/fmc-2017-0152. Epub 2018 Jan 30.
7
Progress with covalent small-molecule kinase inhibitors.
Drug Discov Today. 2018 Mar;23(3):727-735. doi: 10.1016/j.drudis.2018.01.035. Epub 2018 Jan 11.
8
THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors.
Br J Pharmacol. 2017 Dec;174 Suppl 1(Suppl Suppl 1):S17-S129. doi: 10.1111/bph.13878.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验