Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki 00014, Finland.
Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki 00014, Finland; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark.
Cell Chem Biol. 2019 Nov 21;26(11):1608-1622.e6. doi: 10.1016/j.chembiol.2019.08.007. Epub 2019 Sep 11.
Owing to the intrinsic polypharmacological nature of most small-molecule kinase inhibitors, there is a need for computational models that enable systematic exploration of the chemogenomic landscape underlying druggable kinome toward more efficient kinome-profiling strategies. We implemented VirtualKinomeProfiler, an efficient computational platform that captures distinct representations of chemical similarity space of the druggable kinome for various drug discovery endeavors. By using the computational platform, we profiled approximately 37 million compound-kinase pairs and made predictions for 151,708 compounds in terms of their repositioning and lead molecule potential, against 248 kinases simultaneously. Experimental testing with biochemical assays validated 51 of the predicted interactions, identifying 19 small-molecule inhibitors of EGFR, HCK, FLT1, and MSK1 protein kinases. The prediction model led to a 1.5-fold increase in precision and 2.8-fold decrease in false-discovery rate, when compared with traditional single-dose biochemical screening, which demonstrates its potential to drastically expedite the kinome-specific drug discovery process.
由于大多数小分子激酶抑制剂具有内在的多药理学性质,因此需要计算模型来系统地探索可药物治疗激酶组的化学生物基因组景观,以实现更有效的激酶组分析策略。我们实现了 VirtualKinomeProfiler,这是一个高效的计算平台,可捕获可药物治疗激酶组的化学相似空间的独特表示形式,以用于各种药物发现工作。通过使用计算平台,我们对大约 3700 万个化合物-激酶对进行了分析,并对 151708 种化合物进行了重新定位和潜在先导分子的预测,同时针对 248 种激酶。通过生化测定进行的实验测试验证了 51 种预测的相互作用,鉴定出 19 种针对 EGFR、HCK、FLT1 和 MSK1 蛋白激酶的小分子抑制剂。与传统的单剂量生化筛选相比,该预测模型的精度提高了 1.5 倍,假阳性率降低了 2.8 倍,这表明它有可能极大地加快特定于激酶的药物发现过程。