Suppr超能文献

橙胡萝卜素蛋白活性状态下的结构与构象柔性。第二部分:准弹性中子散射。

Solution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein. Part II: Quasielastic Neutron Scattering.

机构信息

Institute of Physics , University of Tartu , 50411 Tartu , Estonia.

Technische Universität Berlin , Institute of Chemistry, Physical Chemistry , 10623 Berlin , Germany.

出版信息

J Phys Chem B. 2019 Nov 14;123(45):9536-9545. doi: 10.1021/acs.jpcb.9b05073. Epub 2019 Nov 1.

Abstract

Orange carotenoid proteins (OCPs), which are protecting cyanobacterial light-harvesting antennae from photodamage, undergo a pronounced structural change upon light absorption. In addition, the active state is anticipated to boost a significantly higher molecular flexibility similar to a "molten globule" state. Here, we used quasielastic neutron scattering to directly characterize the vibrational and conformational molecular dynamics of OCP in its ground and active states, respectively, on the picosecond time scale. At a temperature of 100 K, we observe mainly (vibronic) inelastic features with peak energies at 5 and 6 meV (40 and 48 cm, respectively). At physiological temperatures, however, two (Lorentzian) quasielastic components represent localized protein motions, that is, stochastic structural fluctuations of protein side chains between various conformational substates of the protein. Global diffusion of OCP is not observed on the given time scale. The slower Lorentzian component is affected by illumination and can be well-characterized by a jump-diffusion model. While the jump diffusion constant is (2.82 ± 0.01) × 10 cm/s at 300 K in the ground state, it is increased by ∼20% to (3.48 ± 0.01) × 10 cm/s in the active state, revealing a strong enhancement of molecular mobility. The increased mobility is also reflected in the average atomic mean square displacement ⟨⟩; we determine a ⟨⟩ of 1.47 ± 0.05 Å in the ground state, but 1.86 ± 0.05 Å in the active state (at 300 K). This effect is assigned to two factors: (i) the elongated structure of the active state with two widely separated protein domains is characterized by a larger number of surface residues with a concomitantly higher degree of motional freedom and (ii) a larger number of hydration water molecules bound at the surface of the protein. We thus conclude that the active state of the orange carotenoid protein displays an enhanced conformational dynamics. The higher degree of flexibility may provide additional channels for nonradiative decay so that harmful excess energy can be more efficiently converted to heat.

摘要

橙色类胡萝卜素蛋白(OCP)可保护蓝藻的光捕获天线免受光损伤,在吸收光后会发生明显的结构变化。此外,预计活跃状态会显著提高分子灵活性,类似于“熔融球蛋白”状态。在这里,我们使用准弹性中子散射分别在皮秒时间尺度上直接表征 OCP 在其基态和活跃状态下的振动和构象分子动力学。在 100 K 的温度下,我们主要观察到(振子)非弹性特征,其峰值能量分别为 5 和 6 meV(分别为 40 和 48 cm)。然而,在生理温度下,两个(洛伦兹)准弹性分量代表局部蛋白质运动,即蛋白质侧链在蛋白质各种构象亚态之间的随机结构波动。在给定的时间尺度上,未观察到 OCP 的整体扩散。较慢的洛伦兹分量受光照影响,可以用跳跃扩散模型很好地描述。虽然在基态下,跳跃扩散常数 在 300 K 时为 (2.82 ± 0.01) × 10 cm/s,但在活跃状态下增加了约 20%,达到 (3.48 ± 0.01) × 10 cm/s,表明分子流动性大大增强。增加的流动性也反映在平均原子均方位移 ⟨⟩中;我们在基态下确定 ⟨⟩为 1.47 ± 0.05 Å,但在活跃状态下为 1.86 ± 0.05 Å(在 300 K 时)。这种效应归因于两个因素:(i) 活跃状态的伸长结构具有两个广泛分离的蛋白质结构域,其表面残基数量较多,运动自由度相应较高;(ii) 更多的水合水分子结合在蛋白质表面。因此,我们得出结论,橙色类胡萝卜素蛋白的活跃状态显示出增强的构象动力学。更高的柔韧性可能为非辐射衰减提供额外的通道,从而可以更有效地将有害的多余能量转化为热量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验