Suppr超能文献

计算机辅助羧酸还原酶催化活性的工程设计。

Computer-assisted engineering of the catalytic activity of a carboxylic acid reductase.

机构信息

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.

State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China.

出版信息

J Biotechnol. 2019 Dec 20;306:97-104. doi: 10.1016/j.jbiotec.2019.09.006. Epub 2019 Sep 21.

Abstract

Carboxylic acid reductases (CARs) play crucial roles in the biosynthesis of optically pure aldehydes with no side products. It has inspired synthetic organic chemists and biotechnologists to exploit them as catalysts in practical applications. However, levels of activity and substrate specificity are not routinely sufficient. Recent developments in protein engineering have produced numerous biocatalysts with new catalytic properties, whereas such efforts in CARs are limited. In this study, we show that the exploitation of information derived from catalytic mechanism analysis and molecular dynamics simulations assisted the semi-rational engineering of a CAR from Segniliparus rugosus (SrCAR) with the aim of increasing activity. Guided by protein-ligand interaction fingerprinting analysis, 17 residues at the substrate binding pockets were first identified. We then performed single site saturation mutagenesis and successfully obtained variants that gave high activities using benzoic acid as the model substrate. As a result, the best mutant K524W enabled 99% conversion and 17.28 s mMk/K, with 7- and 2-fold improvement compared to the wild-type, respectively. The engineered catalyst K524W as well as a second variant K524Q proved to be effective in the reduction of other benzoic acid derivatives. Insight into the source of enhanced activity was gained by molecular dynamics simulations.

摘要

羧酸还原酶(CARs)在生物合成光学纯醛方面发挥着至关重要的作用,且没有副产物。这激发了合成有机化学家们和生物技术学家们将其用作实际应用中的催化剂。然而,其活性水平和底物特异性通常还不够。蛋白质工程的最新进展已经产生了许多具有新催化特性的生物催化剂,而在 CARs 中的此类努力是有限的。在本研究中,我们表明,利用催化机制分析和分子动力学模拟所得到的信息,可以辅助对来自 Rugosus (SrCAR)的 CAR 进行半理性工程改造,从而提高其活性。通过对蛋白-配体相互作用指纹分析,首先确定了在底物结合口袋中的 17 个残基。然后,我们进行了单点饱和突变,并成功获得了使用苯甲酸作为模型底物时具有高活性的变体。结果,最佳突变体 K524W 使转化率达到 99%,Km 值为 17.28 s mMk/K,与野生型相比分别提高了 7 倍和 2 倍。工程化的催化剂 K524W 以及第二个变体 K524Q 被证明在还原其他苯甲酸衍生物方面也很有效。通过分子动力学模拟,我们深入了解了增强活性的来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验