Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Pharmacol Rev. 2019 Oct;71(4):571-595. doi: 10.1124/pr.119.017863.
Endogenous ions play important roles in the function and pharmacology of G-protein coupled receptors (GPCRs). Historically the evidence for ionic modulation of GPCR function dates to 1973 with studies of opioid receptors, where it was demonstrated that physiologic concentrations of sodium allosterically attenuated agonist binding. This Na-selective effect was distinct from effects of other monovalent and divalent cations, with the latter usually counteracting sodium's negative allosteric modulation of binding. Since then, numerous studies documenting the effects of mono- and divalent ions on GPCR function have been published. While ions can act selectively and nonselectively at many sites in different receptors, the discovery of the conserved sodium ion site in class A GPCR structures in 2012 revealed the unique nature of Na site, which has emerged as a near-universal site for allosteric modulation of class A GPCR structure and function. In this review, we synthesize and highlight recent advances in the functional, biophysical, and structural characterization of ions bound to GPCRs. Taken together, these findings provide a molecular understanding of the unique roles of Na and other ions as GPCR allosteric modulators. We will also discuss how this knowledge can be applied to the redesign of receptors and ligand probes for desired functional and pharmacological profiles. SIGNIFICANCE STATEMENT: The function and pharmacology of GPCRs strongly depend on the presence of mono and divalent ions in experimental assays and in living organisms. Recent insights into the molecular mechanism of this ion-dependent allosterism from structural, biophysical, biochemical, and computational studies provide quantitative understandings of the pharmacological effects of drugs in vitro and in vivo and open new avenues for the rational design of chemical probes and drug candidates with improved properties.
内源性离子在 G 蛋白偶联受体 (GPCR) 的功能和药理学中发挥着重要作用。从历史上看,离子调节 GPCR 功能的证据可以追溯到 1973 年对阿片受体的研究,其中表明生理浓度的钠离子变构减弱了激动剂的结合。这种 Na 选择性效应与其他单价和二价阳离子的效应不同,后者通常抵消了钠离子对结合的负变构调节。从那时起,许多记录单离子和二价离子对 GPCR 功能影响的研究已经发表。虽然离子可以在不同受体的许多部位选择性和非选择性地作用,但 2012 年在 A 类 GPCR 结构中发现保守的钠离子结合位点揭示了 Na 位点的独特性质,它已成为变构调节 A 类 GPCR 结构和功能的近通用位点。在这篇综述中,我们综合并强调了最近在与 GPCR 结合的离子的功能、生物物理和结构特征方面的进展。综上所述,这些发现为 Na 和其他离子作为 GPCR 变构调节剂的独特作用提供了分子理解。我们还将讨论如何将这些知识应用于受体和配体探针的重新设计,以获得所需的功能和药理学特征。
在实验测定和活生物体中,GPCR 的功能和药理学强烈依赖于单离子和二价离子的存在。最近从结构、生物物理、生化和计算研究中获得的关于这种离子依赖性变构作用的分子机制的见解,提供了对药物在体外和体内的药理学效应的定量理解,并为化学探针和药物候选物的合理设计开辟了新的途径,以提高其性质。