Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America.
Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America.
PLoS Comput Biol. 2019 Jan 24;15(1):e1006689. doi: 10.1371/journal.pcbi.1006689. eCollection 2019 Jan.
The differential modulation of agonist and antagonist binding to opioid receptors (ORs) by sodium (Na+) has been known for decades. To shed light on the molecular determinants, thermodynamics, and kinetics of Na+ translocation through the μ-OR (MOR), we used a multi-ensemble Markov model framework combining equilibrium and non-equilibrium atomistic molecular dynamics simulations of Na+ binding to MOR active or inactive crystal structures embedded in an explicit lipid bilayer. We identify an energetically favorable, continuous ion pathway through the MOR active conformation only, and provide, for the first time: i) estimates of the energy differences and required timescales of Na+ translocation in inactive and active MORs, ii) estimates of Na+-induced changes to agonist binding validated by radioligand measurements, and iii) testable hypotheses of molecular determinants and correlated motions involved in this translocation, which are likely to play a key role in MOR signaling.
几十年来,人们已经知道钠离子(Na+)对阿片受体(ORs)激动剂和拮抗剂结合的差异调节作用。为了阐明 Na+通过 μ-阿片受体(MOR)转运的分子决定因素、热力学和动力学,我们使用了一种多集马尔可夫模型框架,该框架结合了平衡和非平衡原子分子动力学模拟,将 Na+结合到嵌入在明确定义的脂质双层中的 MOR 活性或非活性晶体结构。我们仅在 MOR 活性构象中确定了一条能量有利的连续离子途径,并首次提供了:i)非活性和活性 MOR 中 Na+转运的能量差异和所需时间尺度的估计值,ii)通过放射性配体测量验证的 Na+诱导的激动剂结合变化的估计值,以及 iii)参与这种转运的分子决定因素和相关运动的可测试假说,这些假说可能在 MOR 信号转导中起关键作用。