Suppr超能文献

使用PENSA对生物分子构象集合进行系统分析。

Systematic analysis of biomolecular conformational ensembles with PENSA.

作者信息

Vögele Martin, Thomson Neil J, Truong Sang T, McAvity Jasper, Zachariae Ulrich, Dror Ron O

机构信息

Department of Computer Science, Stanford University, Stanford, California 94305, USA.

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.

出版信息

J Chem Phys. 2025 Jan 7;162(1). doi: 10.1063/5.0235544.

Abstract

Atomic-level simulations are widely used to study biomolecules and their dynamics. A common goal in such studies is to compare simulations of a molecular system under several conditions-for example, with various mutations or bound ligands-in order to identify differences between the molecular conformations adopted under these conditions. However, the large amount of data produced by simulations of ever larger and more complex systems often renders it difficult to identify the structural features that are relevant to a particular biochemical phenomenon. We present a flexible software package named Python ENSemble Analysis (PENSA) that enables a comprehensive and thorough investigation into biomolecular conformational ensembles. It provides featurization and feature transformations that allow for a complete representation of biomolecules such as proteins and nucleic acids, including water and ion binding sites, thus avoiding the bias that would come with manual feature selection. PENSA implements methods to systematically compare the distributions of molecular features across ensembles to find the significant differences between them and identify regions of interest. It also includes a novel approach to quantify the state-specific information between two regions of a biomolecule, which allows, for example, tracing information flow to identify allosteric pathways. PENSA also comes with convenient tools for loading data and visualizing results, making them quick to process and easy to interpret. PENSA is an open-source Python library maintained at https://github.com/drorlab/pensa along with an example workflow and a tutorial. We demonstrate its usefulness in real-world examples by showing how it helps us determine molecular mechanisms efficiently.

摘要

原子水平的模拟被广泛用于研究生物分子及其动力学。此类研究的一个常见目标是比较分子系统在几种条件下的模拟结果——例如,具有各种突变或结合配体的情况——以便识别在这些条件下所采用的分子构象之间的差异。然而,由越来越大且越来越复杂的系统的模拟产生的大量数据常常使得难以识别与特定生化现象相关的结构特征。我们提出了一个名为Python集成分析(PENSA)的灵活软件包,它能够对生物分子构象集合进行全面而深入的研究。它提供了特征化和特征转换,能够完整地表示蛋白质和核酸等生物分子,包括水和离子结合位点,从而避免了手动特征选择可能带来的偏差。PENSA实现了系统比较集合中分子特征分布的方法,以找到它们之间的显著差异并识别感兴趣的区域。它还包括一种新颖的方法来量化生物分子两个区域之间的状态特异性信息,例如,这允许追踪信息流以识别变构途径。PENSA还附带了用于加载数据和可视化结果的便捷工具,使其处理快速且易于解释。PENSA是一个开源的Python库,可在https://github.com/drorlab/pensa上获取,同时还有一个示例工作流程和教程。我们通过展示它如何帮助我们高效地确定分子机制,在实际例子中证明了它的实用性。

相似文献

本文引用的文献

1
Mechanism of negative μ-opioid receptor modulation by sodium ions.钠离子对μ-阿片受体负性调节的机制。
Structure. 2025 Jan 2;33(1):196-205.e2. doi: 10.1016/j.str.2024.10.023. Epub 2024 Nov 12.
4
GPCR systems pharmacology: a different perspective on the development of biased therapeutics.GPCR 系统药理学:偏向性治疗药物开发的新视角。
Am J Physiol Cell Physiol. 2022 May 1;322(5):C887-C895. doi: 10.1152/ajpcell.00449.2021. Epub 2022 Feb 23.
5
GPCR activation mechanisms across classes and macro/microscales.跨类和宏/微观尺度的 G 蛋白偶联受体激活机制。
Nat Struct Mol Biol. 2021 Nov;28(11):879-888. doi: 10.1038/s41594-021-00674-7. Epub 2021 Nov 10.
7
Time-Lagged Independent Component Analysis of Random Walks and Protein Dynamics.随机漫步和蛋白质动力学的时滞独立成分分析。
J Chem Theory Comput. 2021 Sep 14;17(9):5766-5776. doi: 10.1021/acs.jctc.1c00273. Epub 2021 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验