Suppr超能文献

天然和重组糖蛋白的化学酶法聚糖重塑

Chemoenzymatic Glycan Remodeling of Natural and Recombinant Glycoproteins.

作者信息

Yang Qiang, Wang Lai-Xi

机构信息

University of Maryland, College Park, MD, United States.

University of Maryland, College Park, MD, United States.

出版信息

Methods Enzymol. 2017;597:265-281. doi: 10.1016/bs.mie.2017.06.006. Epub 2017 Jul 5.

Abstract

N-glycosylation plays important roles in modulating the biological functions of glycoproteins, such as protein folding, stability, and immunogenicity. However, acquiring homogeneous glycoforms of glycoproteins has been a challenging task for functional studies and therapeutic applications. In this chapter, we describe an efficient chemoenzymatic glycan remodeling protocol for making homogeneous glycoproteins that involves enzymatic deglycosylation and subsequent reglycosylation procedures. Two therapeutic glycoproteins, Herceptin (trastuzumab, a therapeutic monoclonal antibody) and erythropoietin (EPO, a glycoprotein hormone), were chosen as the model systems. The detailed protocol includes the deglycosylation of the Herceptin or EPO with a wild-type endo-β-N-acetylglucosaminidase, to remove the heterogeneous N-glycans, leading to the GlcNAc-protein or Fucα1,6GlcNAc-protein intermediate. Then desired homogeneous N-glycans are attached to the acceptor by using an activated sugar oxazoline as the donor substrate and a specific glycosynthase (mutant of endoglycosidase) as the catalyst to reconstitute a homogeneous glycoform. Using this approach, Herceptin was remodeled to an afucosylated complex glycoform and a ManGlcNAc glycoform, with the former showing significantly enhanced antibody-dependent cellular cytotoxicity. EPO was engineered to carry azide-tagged ManGlcNAc glycans that could be further modified via click chemistry to introduce other functional groups.

摘要

N-糖基化在调节糖蛋白的生物学功能中发挥着重要作用,如蛋白质折叠、稳定性和免疫原性。然而,获得糖蛋白的均一糖型一直是功能研究和治疗应用中的一项具有挑战性的任务。在本章中,我们描述了一种高效的化学酶法聚糖重塑方案,用于制备均一糖蛋白,该方案涉及酶促去糖基化和随后的再糖基化过程。选择两种治疗性糖蛋白,赫赛汀(曲妥珠单抗,一种治疗性单克隆抗体)和促红细胞生成素(EPO,一种糖蛋白激素)作为模型系统。详细方案包括用野生型内切β-N-乙酰氨基葡萄糖苷酶对赫赛汀或EPO进行去糖基化,以去除异质N-聚糖,生成GlcNAc-蛋白或Fucα1,6GlcNAc-蛋白中间体。然后,通过使用活化的糖恶唑啉作为供体底物和特定的糖基合酶(内切糖苷酶突变体)作为催化剂,将所需的均一N-聚糖连接到受体上,以重建均一糖型。使用这种方法,赫赛汀被重塑为无岩藻糖基化的复合糖型和ManGlcNAc糖型,前者显示出显著增强的抗体依赖性细胞毒性。EPO经过工程改造,携带叠氮标记的ManGlcNAc聚糖,可通过点击化学进一步修饰以引入其他功能基团。

相似文献

1
Chemoenzymatic Glycan Remodeling of Natural and Recombinant Glycoproteins.
Methods Enzymol. 2017;597:265-281. doi: 10.1016/bs.mie.2017.06.006. Epub 2017 Jul 5.
2
Chemoenzymatic Glyco-engineering of Monoclonal Antibodies.
Methods Mol Biol. 2015;1321:375-87. doi: 10.1007/978-1-4939-2760-9_25.
3
Glycan Remodeling of Human Erythropoietin (EPO) Through Combined Mammalian Cell Engineering and Chemoenzymatic Transglycosylation.
ACS Chem Biol. 2017 Jun 16;12(6):1665-1673. doi: 10.1021/acschembio.7b00282. Epub 2017 May 5.
7
Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans.
J Biol Chem. 2016 Oct 28;291(44):23305-23317. doi: 10.1074/jbc.M116.737395. Epub 2016 Sep 14.
8
Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody.
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):12023-12027. doi: 10.1073/pnas.1812833115. Epub 2018 Nov 5.
10
Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):720-725. doi: 10.1073/pnas.1718172115. Epub 2018 Jan 8.

引用本文的文献

1
Site-Specific Glyco-Tagging of Native Proteins for the Development of Biologicals.
J Am Chem Soc. 2024 Dec 18;146(50):34452-34465. doi: 10.1021/jacs.4c11091. Epub 2024 Dec 9.
2
Strategies to control therapeutic antibody glycosylation during bioprocessing: Synthesis and separation.
Biotechnol Bioeng. 2022 Jun;119(6):1343-1358. doi: 10.1002/bit.28066. Epub 2022 Feb 28.
3
Glycans in drug discovery.
Medchemcomm. 2019 Jul 26;10(10):1678-1691. doi: 10.1039/c9md00292h. eCollection 2019 Oct 1.
4
Enterococcus faecalis α1-2-mannosidase (EfMan-I): an efficient catalyst for glycoprotein N-glycan modification.
FEBS Lett. 2020 Feb;594(3):439-451. doi: 10.1002/1873-3468.13618. Epub 2019 Oct 8.

本文引用的文献

1
Modulating IgG effector function by Fc glycan engineering.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3485-3490. doi: 10.1073/pnas.1702173114. Epub 2017 Mar 13.
2
Optimal Synthetic Glycosylation of a Therapeutic Antibody.
Angew Chem Weinheim Bergstr Ger. 2016 Feb 12;128(7):2407-2413. doi: 10.1002/ange.201508723. Epub 2016 Jan 12.
5
A common glycan structure on immunoglobulin G for enhancement of effector functions.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10611-6. doi: 10.1073/pnas.1513456112. Epub 2015 Aug 7.
6
Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics.
Adv Cancer Res. 2015;126:11-51. doi: 10.1016/bs.acr.2014.11.001. Epub 2015 Feb 7.
7
Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions.
Chem Biol. 2014 Jan 16;21(1):51-66. doi: 10.1016/j.chembiol.2014.01.001.
8
Emerging principles for the therapeutic exploitation of glycosylation.
Science. 2014 Jan 3;343(6166):1235681. doi: 10.1126/science.1235681.
9
Mass spectrometric glycoform profiling of the innovator and biosimilar erythropoietin and darbepoetin by LC/ESI-MS.
J Pharm Biomed Anal. 2013 Sep;83:65-74. doi: 10.1016/j.jpba.2013.04.031. Epub 2013 Apr 29.
10
Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions.
J Am Chem Soc. 2012 Jul 25;134(29):12308-18. doi: 10.1021/ja3051266. Epub 2012 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验