Suppr超能文献

利用机器学习理解伴有与 Chiari 样畸形相关的疼痛和脊髓空洞症的骑士查理王小猎犬的神经形态变化和基于图像的生物标志物识别。

Using machine learning to understand neuromorphological change and image-based biomarker identification in Cavalier King Charles Spaniels with Chiari-like malformation-associated pain and syringomyelia.

机构信息

CVSSP, Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, United Kingdom.

Faculty of Health & Medical Sciences, School of Veterinary Medicine, Guildford, United Kingdom.

出版信息

J Vet Intern Med. 2019 Nov;33(6):2665-2674. doi: 10.1111/jvim.15621. Epub 2019 Sep 24.

Abstract

BACKGROUND

Chiari-like malformation (CM) is a complex malformation of the skull and cranial cervical vertebrae that potentially results in pain and secondary syringomyelia (SM). Chiari-like malformation-associated pain (CM-P) can be challenging to diagnose. We propose a machine learning approach to characterize morphological changes in dogs that may or may not be apparent to human observers. This data-driven approach can remove potential bias (or blindness) that may be produced by a hypothesis-driven expert observer approach.

HYPOTHESIS/OBJECTIVES: To understand neuromorphological change and to identify image-based biomarkers in dogs with CM-P and symptomatic SM (SM-S) using a novel machine learning approach, with the aim of increasing the understanding of these disorders.

ANIMALS

Thirty-two client-owned Cavalier King Charles Spaniels (CKCSs; 11 controls, 10 CM-P, 11 SM-S).

METHODS

Retrospective study using T2-weighted midsagittal Digital Imaging and Communications in Medicine (DICOM) anonymized images, which then were mapped to images of an average clinically normal CKCS reference using Demons image registration. Key deformation features were automatically selected from the resulting deformation maps. A kernelized support vector machine was used for classifying characteristic localized changes in morphology.

RESULTS

Candidate biomarkers were identified with receiver operating characteristic curves with area under the curve (AUC) of 0.78 (sensitivity 82%; specificity 69%) for the CM-P biomarkers collectively and an AUC of 0.82 (sensitivity, 93%; specificity, 67%) for the SM-S biomarkers, collectively.

CONCLUSIONS AND CLINICAL IMPORTANCE

Machine learning techniques can assist CM/SM diagnosis and facilitate understanding of abnormal morphology location with the potential to be applied to a variety of breeds and conformational diseases.

摘要

背景

Chiari 样畸形(CM)是颅骨和颅颈交界处的一种复杂畸形,可能导致疼痛和继发性脊髓空洞症(SM)。Chiari 样畸形相关疼痛(CM-P)的诊断具有挑战性。我们提出了一种机器学习方法来描述犬类可能或可能不明显的形态变化,以消除可能由假设驱动的专家观察者方法产生的潜在偏差(或盲目性)。

假设/目的:使用一种新的机器学习方法,了解 CM-P 和有症状 SM(SM-S)犬的神经形态变化,并确定基于图像的生物标志物,目的是增加对这些疾病的理解。

动物

32 只患有 CM-P 和 SM-S 的客户拥有的骑士查理王小猎犬(CKCS;11 只对照,10 只 CM-P,11 只 SM-S)。

方法

回顾性研究使用 T2 加权中矢状面数字成像和通信医学(DICOM)匿名图像,然后使用 Demons 图像配准将这些图像映射到平均临床正常 CKCS 参考图像上。从生成的变形图中自动选择关键变形特征。使用核支持向量机对特征性局部形态变化进行分类。

结果

使用受试者工作特征曲线识别候选生物标志物,CM-P 生物标志物的曲线下面积(AUC)为 0.78(敏感性 82%,特异性 69%),SM-S 生物标志物的 AUC 为 0.82(敏感性 93%,特异性 67%)。

结论和临床意义

机器学习技术可以辅助 CM/SM 诊断,并有助于了解异常形态位置,有可能应用于多种品种和畸形疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9058/6872629/f3f163de581e/JVIM-33-2665-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验