Suppr超能文献

等离子体纳米粒子界面脂质双层膜。

Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes.

机构信息

Department of Chemistry , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , South Korea.

出版信息

Acc Chem Res. 2019 Oct 15;52(10):2793-2805. doi: 10.1021/acs.accounts.9b00327. Epub 2019 Sep 25.

Abstract

Plasmonic nanoparticles are widely exploited in diverse bioapplications ranging from therapeutics to biosensing and biocomputing because of their strong and tunable light-matter interactions, facile and versatile chemical/biological ligand modifications, and biocompatibility. With the rapid growth of nanobiotechnology, understanding dynamic interactions between nanoparticles and biological systems at the molecular or single-particle level is becoming increasingly important for interrogating biological systems with functional nanostructures and for developing nanoparticle-based biosensors and therapeutic agents. Therefore, significant efforts have been devoted to precisely design and create nano-bio interfaces by manipulating the nanoparticles' size, shape, and surface ligand interactions with complex biological systems to maximize their performance and avoid unwanted responses, such as their agglomeration and cytotoxicity. However, investigating physicochemical interactions at the nano-bio interfaces in a quantitative and controllable manner remains challenging, as the interfaces involve highly complex networks between nanoparticles, biomolecules, and cells across multiple scales, each with a myriad of different chemical and biological interactions. A lipid bilayer is a membrane made of two layers of lipid molecules that forms a barrier around cells and plays structural and functional roles in diverse biological processes because they incorporate and present functional molecules (such as membrane proteins) with lateral fluidity. Plasmonic nanoparticles conjugated on lipid membranes provide reliable analytical labels and functional moieties that allow for studying and manipulating interactions between nanoparticles and molecules with single-particle resolution; they also serve as efficient tools for applying optical, mechanical, and thermal stimuli to biological systems, which stem from plasmonic properties. Recently, new opportunities have emerged by interfacing nanoparticle-modified lipid bilayers (NLBs) with complex systems such as molecular circuits and living systems. In this Account, we briefly review how plasmonic properties can be beneficially harnessed on lipid bilayer membranes to investigate the structures and functions of cellular membranes and to develop new platforms for biomedical applications. In particular, we discuss the versatility of supported lipid bilayers (SLBs), which are planar lipid bilayers on hydrophilic substrates, as dynamic biomaterials that provide lateral fluidity and cell membrane-like environments. We then summarize our efforts to create a quantitative analytical platform utilizing nanoparticles as active building blocks and SLBs as integrative substrates. Through this bottom-up approach, various functionalized nanoparticles have been introduced onto lipid bilayers to render nanoparticle-nanoparticle, nanoparticle-lipid bilayer, and biomolecule-lipid bilayer interfaces programmable. Our system provides a new class of tools for studying thermodynamics and kinetics in complex networks of nanostructures and for realizing unique applications in biosensing and biocomputing.

摘要

等离子体纳米粒子由于其强的可调谐光物质相互作用、简便多样的化学/生物配体修饰以及生物相容性,在从治疗到传感和生物计算的各种生物应用中得到了广泛的应用。随着纳米生物技术的快速发展,了解纳米粒子与生物系统之间在分子或单粒子水平上的动态相互作用,对于用功能纳米结构研究生物系统以及开发基于纳米粒子的生物传感器和治疗剂变得越来越重要。因此,人们投入了大量的精力通过操纵纳米粒子的尺寸、形状和表面配体与复杂生物系统的相互作用,来精确设计和创造纳米-生物界面,以最大限度地提高它们的性能并避免不必要的反应,如团聚和细胞毒性。然而,以定量和可控的方式研究纳米-生物界面的物理化学相互作用仍然具有挑战性,因为界面涉及到跨越多个尺度的纳米粒子、生物分子和细胞之间高度复杂的网络,每个网络都有无数不同的化学和生物学相互作用。脂质双层是由两层脂质分子组成的膜,它围绕着细胞形成一个屏障,并在各种生物过程中发挥结构和功能作用,因为它们包含并呈现具有横向流动性的功能分子(如膜蛋白)。连接在脂质膜上的等离子体纳米粒子提供了可靠的分析标签和功能部分,允许以单粒子分辨率研究和操纵纳米粒子与分子之间的相互作用;它们还可以作为将光学、机械和热刺激应用于生物系统的有效工具,这源于等离子体特性。最近,通过将修饰脂质双层(NLB)与分子电路和活体等复杂系统相连接,出现了新的机会。在本综述中,我们简要回顾了如何在脂质双层膜上有益地利用等离子体特性来研究细胞膜的结构和功能,并开发用于生物医学应用的新平台。特别是,我们讨论了支撑脂质双层(SLB)的多功能性,SLB 是亲水基底上的平面脂质双层,作为提供横向流动性和细胞膜样环境的动态生物材料。然后,我们总结了我们利用纳米粒子作为活性构建块和 SLB 作为整合基底来创建定量分析平台的努力。通过这种自下而上的方法,已经将各种功能化的纳米粒子引入脂质双层中,以实现纳米粒子-纳米粒子、纳米粒子-脂质双层和生物分子-脂质双层界面的可编程性。我们的系统为研究复杂纳米结构网络中的热力学和动力学以及实现生物传感和生物计算中的独特应用提供了一类新的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验