Department of Chemistry, Seoul National University , Seoul 151-747, South Korea.
J Am Chem Soc. 2014 Mar 12;136(10):4081-8. doi: 10.1021/ja501225p. Epub 2014 Feb 26.
Observation of individual single-nanoparticle reactions provides direct information and insight for many complex chemical, physical, and biological processes, but this is utterly challenging with conventional high-resolution imaging techniques on conventional platforms. Here, we developed a photostable plasmonic nanoparticle-modified supported lipid bilayer (PNP-SLB) platform that allows for massively parallel in situ analysis of the interactions between nanoparticles with single-particle resolution on a two-dimensional (2D) fluidic surface. Each particle-by-particle PNP clustering process was monitored in real time and quantified via analysis of individual particle diffusion trajectories and single-particle-level plasmonic coupling. Importantly, the PNP-SLB-based nanoparticle cluster growth kinetics result was fitted well. As an application example, we performed a DNA detection assay, and the result suggests that our approach has very promising sensitivity and dynamic range (high attomolar to high femtomolar) without optimization, as well as remarkable single-base mismatch discrimination capability. The method shown herein can be readily applied for many different types of intermolecular and interparticle interactions and provide convenient tools and new insights for studying dynamic interactions on a highly controllable and analytical platform.
观察单个纳米颗粒的反应为许多复杂的化学、物理和生物过程提供了直接的信息和深入的了解,但这在传统平台上使用传统的高分辨率成像技术是完全具有挑战性的。在这里,我们开发了一种光稳定的等离子体纳米颗粒修饰的支撑脂质双层(PNP-SLB)平台,允许在二维(2D)流体表面上以单颗粒分辨率大规模并行原位分析纳米颗粒之间的相互作用。通过分析单个颗粒的扩散轨迹和单颗粒级别的等离子体耦合,实时监测每个颗粒的 PNP 聚类过程,并进行定量分析。重要的是,基于 PNP-SLB 的纳米颗粒簇生长动力学结果拟合良好。作为一个应用示例,我们进行了 DNA 检测分析,结果表明,我们的方法具有非常有前途的灵敏度和动态范围(高飞摩尔到高皮摩尔),无需优化,并且具有显著的单碱基错配识别能力。本文所展示的方法可以很容易地应用于许多不同类型的分子间和颗粒间相互作用,并为在高度可控和分析性平台上研究动态相互作用提供了便捷的工具和新的见解。