Suppr超能文献

磷脂包覆的疏水性介孔硅纳米颗粒通过高强度聚焦超声增强血栓切除术,同时产生较少的诱导血栓碎片。

Phospholipid-Coated Hydrophobic Mesoporous Silica Nanoparticles Enhance Thrombectomy by High-Intensity Focused Ultrasound with Low Production of Embolism-Inducing Clot Debris.

机构信息

Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80303 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 Oct 9;11(40):36324-36332. doi: 10.1021/acsami.9b11095. Epub 2019 Sep 26.

Abstract

Here we report the efficacy of a nanoparticle-assisted high-intensity focused ultrasound (HIFU) treatment that selectively destroys blood clots while minimizing generation of microparticles, or microemboli, that can cause further complications postsurgery. Treatment of malignant blood clots (thrombi) and the resulting emboli are critical problems for numerous patients, and treatments addressing these conditions would benefit from advancements in noninvasive procedures such as HIFU. While recanalization of occlusive blood clots is currently addressed with surgical intervention that seeks to minimize formation of large emboli, there is a danger of microemboli (micrometer-size particles) that have been theorized to be responsible for the poor correlation between apparent surgical success and patient outcome. Here, the addition of phospholipid-coated hydrophobically modified silica nanoparticles (P@hMSNs) improved the efficacy of HIFU treatment by serving as cavitation nuclei for mechanical disruption of thrombi. This treatment was evaluated for the ability to clear the HIFU focal area of a thick and dense thrombus within 10 min. Moreover, it was found that the use of P@hMSN+HIFU treatment generated a significantly smaller microembolic load as compared to comparison techniques, including a HIFU + microbubble contrast agent, HIFU alone, and direct mechanical disruption. This reduction in the microembolic load can occur either with primary removal of the clot by P@hMSN+HIFU or by insonation of the clot fragments after mechanical thrombectomy. Lastly, this method was evaluated in a flow model, where nonocclusive model thrombi and model emboli were mechanically ablated within the focal area within 15 s. Together, these results represent a combination therapy capable of resolving thrombi and microembolisms resulting from thrombectomy through localized destruction of clotted material.

摘要

在这里,我们报告了一种纳米颗粒辅助高强度聚焦超声(HIFU)治疗的疗效,该治疗方法可以选择性地破坏血栓,同时最大限度地减少产生可能导致术后进一步并发症的微颗粒(微栓塞)。恶性血栓(血栓)的治疗以及由此产生的栓塞是许多患者的关键问题,针对这些情况的治疗方法将受益于 HIFU 等非侵入性手术的进步。虽然目前通过旨在最大限度减少大栓塞形成的手术干预来解决闭塞性血栓的再通问题,但存在微栓塞(微米大小的颗粒)的危险,据推测,微栓塞是手术成功率与患者预后之间相关性差的原因。在这里,添加磷脂包覆的疏水改性二氧化硅纳米颗粒(P@hMSNs)通过充当血栓机械破坏的空化核,提高了 HIFU 治疗的疗效。这种治疗方法评估了在 10 分钟内清除 HIFU 焦点区域内厚而致密血栓的能力。此外,与比较技术相比,发现使用 P@hMSN+HIFU 治疗会产生明显更小的微栓塞负荷,包括 HIFU+微泡造影剂、单独的 HIFU 和直接机械破坏。这种微栓塞负荷的减少可能发生在 P@hMSN+HIFU 直接去除血栓的情况下,也可能发生在机械血栓切除术之后对血栓碎片进行照射的情况下。最后,在流动模型中评估了这种方法,其中在 15 秒内可以在焦点区域内机械消融非闭塞模型血栓和模型栓塞物。总之,这些结果代表了一种联合治疗方法,能够通过局部破坏凝结物质来解决血栓形成和血栓切除术引起的微栓塞。

相似文献

2
Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):36786-36795. doi: 10.1021/acsami.8b15368. Epub 2018 Oct 19.
3
Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation.
Adv Healthc Mater. 2017 Sep;6(18). doi: 10.1002/adhm.201700514. Epub 2017 Jul 12.
4
Sonothrombolysis with an acoustic net-assisted boiling histotripsy: A proof-of-concept study.
Ultrason Sonochem. 2023 Jun;96:106435. doi: 10.1016/j.ultsonch.2023.106435. Epub 2023 May 8.
5
Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy).
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1342-55. doi: 10.1109/TUFFC.2015.007016.
6
Temperature-Responsive Hydrophobic Silica Nanoparticle Ultrasound Contrast Agents Directed by Phospholipid Phase Behavior.
ACS Appl Mater Interfaces. 2019 May 1;11(17):15233-15240. doi: 10.1021/acsami.8b22659. Epub 2019 Apr 23.
7
Mechanical damage thresholds for hematomas near gas-containing bodies in pulsed HIFU fields.
Phys Med Biol. 2022 Oct 20;67(21). doi: 10.1088/1361-6560/ac96c7.
8
Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery.
J Control Release. 2017 Nov 28;266:75-86. doi: 10.1016/j.jconrel.2017.09.022. Epub 2017 Sep 18.
9
Endogenous Catalytic Generation of O Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.
ACS Nano. 2017 Sep 26;11(9):9093-9102. doi: 10.1021/acsnano.7b03772. Epub 2017 Aug 16.
10
Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets.
Ultrason Sonochem. 2019 Jun;54:183-191. doi: 10.1016/j.ultsonch.2019.02.001. Epub 2019 Feb 2.

引用本文的文献

1
Application of bifidobacterium in tumor therapy.
Front Oncol. 2025 May 15;15:1551924. doi: 10.3389/fonc.2025.1551924. eCollection 2025.
2
Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application.
Int J Nanomedicine. 2024 Nov 11;19:11767-11788. doi: 10.2147/IJN.S496028. eCollection 2024.
3
An Analysis of Sonothrombolysis and Cavitation for Retracted and Unretracted Clots Using Microbubbles Versus Low-Boiling-Point Nanodroplets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Feb;69(2):711-719. doi: 10.1109/TUFFC.2021.3137125. Epub 2022 Jan 27.
4
Gas-stabilizing nanoparticles for ultrasound imaging and therapy of cancer.
Nano Converg. 2021 Dec 1;8(1):39. doi: 10.1186/s40580-021-00287-2.
5
Gas-Stabilizing Sub-100 nm Mesoporous Silica Nanoparticles for Ultrasound Theranostics.
ACS Omega. 2020 Sep 14;5(38):24762-24772. doi: 10.1021/acsomega.0c03377. eCollection 2020 Sep 29.
6
A Comparison of Sonothrombolysis in Aged Clots between Low-Boiling-Point Phase-Change Nanodroplets and Microbubbles of the Same Composition.
Ultrasound Med Biol. 2020 Nov;46(11):3059-3068. doi: 10.1016/j.ultrasmedbio.2020.07.008. Epub 2020 Aug 14.
7
Experimental Study of Tumor Therapy Mediated by Multimodal Imaging Based on a Biological Targeting Synergistic Agent.
Int J Nanomedicine. 2020 Mar 17;15:1871-1888. doi: 10.2147/IJN.S238398. eCollection 2020.

本文引用的文献

1
Temperature-Responsive Hydrophobic Silica Nanoparticle Ultrasound Contrast Agents Directed by Phospholipid Phase Behavior.
ACS Appl Mater Interfaces. 2019 May 1;11(17):15233-15240. doi: 10.1021/acsami.8b22659. Epub 2019 Apr 23.
2
Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):36786-36795. doi: 10.1021/acsami.8b15368. Epub 2018 Oct 19.
3
Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation.
Adv Healthc Mater. 2017 Sep;6(18). doi: 10.1002/adhm.201700514. Epub 2017 Jul 12.
4
Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy.
Chem Mater. 2016 Aug 23;28(16):5962-5972. doi: 10.1021/acs.chemmater.6b02634. Epub 2016 Aug 9.
5
Microbubble-Mediated Sonothrombolysis Improves Outcome After Thrombotic Microembolism-Induced Acute Ischemic Stroke.
Stroke. 2016 May;47(5):1344-53. doi: 10.1161/STROKEAHA.115.012056. Epub 2016 Apr 5.
6
Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbon-Free Nanoscale Ultrasound Contrast Agents.
Adv Healthc Mater. 2016 Jun;5(11):1290-8. doi: 10.1002/adhm.201600030. Epub 2016 Mar 15.
8
Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study.
Phys Med Biol. 2015 Sep 21;60(18):7403-18. doi: 10.1088/0031-9155/60/18/7403. Epub 2015 Sep 9.
9
High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles.
J Ther Ultrasound. 2015 May 27;3:7. doi: 10.1186/s40349-015-0029-4. eCollection 2015.
10
New Developments in Liposomal Drug Delivery.
Chem Rev. 2015 Oct 14;115(19):10938-66. doi: 10.1021/acs.chemrev.5b00046. Epub 2015 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验