BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
Lab Chip. 2019 Nov 7;19(21):3575-3601. doi: 10.1039/c9lc00318e. Epub 2019 Sep 27.
In this review article, we discuss the latest advances and future perspectives of microfluidics for micro/nanoscale catalyst particle synthesis and analysis. In the first section, we present an overview of the different methods to synthesize catalysts making use of microfluidics and in the second section, we critically review catalyst particle characterization using microfluidics. The strengths and challenges of these approaches are highlighted with various showcases selected from the recent literature. In the third section, we give our opinion on the future perspectives of the combination of catalytic nanostructures and microfluidics. We anticipate that in the synthesis and analysis of individual catalyst particles, generation of higher throughput and better understanding of transport inside individual porous catalyst particles are some of the most important benefits of microfluidics for catalyst research.
在这篇综述文章中,我们讨论了微流控技术在微/纳米尺度催化剂颗粒合成和分析方面的最新进展和未来展望。在第一节中,我们介绍了利用微流控技术合成催化剂的不同方法,在第二节中,我们批判性地回顾了利用微流控技术对催化剂颗粒进行表征的方法。我们通过从近期文献中选择的各种实例,突出了这些方法的优缺点。在第三节中,我们对催化纳米结构与微流控相结合的未来展望提出了看法。我们预计,在单个催化剂颗粒的合成和分析方面,提高高通量和更好地理解单个多孔催化剂颗粒内部的传输将是微流控技术在催化剂研究中最重要的优势之一。