Suppr超能文献

基于葡萄糖和速度相关控制罚函数的人工胰腺自适应区域模型预测控制。

Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties.

出版信息

IEEE Trans Biomed Eng. 2019 Apr;66(4):1045-1054. doi: 10.1109/TBME.2018.2866392. Epub 2018 Aug 21.

Abstract

OBJECTIVE

Zone model predictive control (MPC) has been proven to be an efficient approach to closed-loop insulin delivery in clinical studies. In this paper, we aim to safely reduce mean glucose levels by proposing control penalty adaptation in the cost function of zone MPC.

METHODS

A zone MPC method with a dynamic cost function that updates its control penalty parameters in real time according to the predicted glucose and its rate of change is developed. The proposed method is evaluated on the entire 100-adult cohort of the FDA-accepted UVA/Padova T1DM simulator and compared with the zone MPC tested in an extended outpatient study.

RESULTS

For unannounced meals, the proposed method leads to statistically significant improvements in terms of mean glucose (153.8 mg/dL vs. 159.0 mg/dL; ) and percentage time in [70, 180] mg/dL ([Formula: see text] vs. [Formula: see text]; ) without increasing the risk of hypoglycemia. Performance for announced meals is similar to that obtained without adaptation. The proposed method also behaves properly and safely for scenarios of moderate meal-bolus and basal rate mismatches, as well as simulated unannounced exercise. Advisory-mode analysis based on clinical data indicates that the method can reduce glucose levels through suggesting additional safe amounts of insulin on top of those suggested by the zone MPC used in the study.

CONCLUSION

The proposed method leads to improved glucose control without increasing hypoglycemia risks.

SIGNIFICANCE

The results validate the feasibility of improving glucose regulation through glucose- and velocity-dependent control penalty adaptation in MPC design.

摘要

目的

区域模型预测控制(MPC)已被证明是临床研究中闭环胰岛素输送的一种有效方法。在本文中,我们旨在通过在区域 MPC 的成本函数中提出控制惩罚自适应来安全地降低平均血糖水平。

方法

开发了一种区域 MPC 方法,其具有动态成本函数,根据预测的血糖及其变化率实时更新其控制惩罚参数。将所提出的方法在 FDA 认可的 UVA/Padova T1DM 模拟器的整个 100 名成人队列上进行评估,并与在扩展门诊研究中测试的区域 MPC 进行比较。

结果

对于未宣布的膳食,所提出的方法在平均血糖(153.8mg/dL 与 159.0mg/dL;)和[70,180]mg/dL 范围内的时间百分比([Formula: see text]与[Formula: see text];)方面具有统计学上的显著改善,而不会增加低血糖的风险。对于宣布的膳食,性能与没有自适应时相似。所提出的方法对于中等膳食-推注和基础率不匹配以及模拟的未宣布运动的情况也表现良好且安全。基于临床数据的咨询模式分析表明,该方法可以通过在研究中使用的区域 MPC 建议的胰岛素之外建议额外的安全量来降低血糖水平。

结论

所提出的方法可在不增加低血糖风险的情况下改善血糖控制。

意义

研究结果验证了通过在 MPC 设计中进行葡萄糖和速度相关的控制惩罚自适应来改善血糖调节的可行性。

相似文献

引用本文的文献

2
Research Gaps, Challenges, and Opportunities in Automated Insulin Delivery Systems.自动胰岛素输送系统的研究空白、挑战与机遇
J Diabetes Sci Technol. 2025 Jul;19(4):937-949. doi: 10.1177/19322968251338754. Epub 2025 Jul 1.
5
Recent advances in the precision control strategy of artificial pancreas.人工胰腺精准控制策略的最新进展。
Med Biol Eng Comput. 2024 Jun;62(6):1615-1638. doi: 10.1007/s11517-024-03042-x. Epub 2024 Feb 28.

本文引用的文献

8
Toward a Run-to-Run Adaptive Artificial Pancreas: In Silico Results.迈向实时自适应人工胰腺:计算机模拟结果。
IEEE Trans Biomed Eng. 2018 Mar;65(3):479-488. doi: 10.1109/TBME.2017.2652062. Epub 2017 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验