Suppr超能文献

使用结构嵌套累积生存时间模型在生存分析中对随时间变化的混杂因素进行调整。

Adjusting for time-varying confounders in survival analysis using structural nested cumulative survival time models.

作者信息

Seaman Shaun, Dukes Oliver, Keogh Ruth, Vansteelandt Stijn

机构信息

MRC Biostatistics Unit, University of Cambridge, Institute of Public Health, Cambridge, UK.

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.

出版信息

Biometrics. 2020 Jun;76(2):472-483. doi: 10.1111/biom.13158. Epub 2019 Nov 7.

Abstract

Accounting for time-varying confounding when assessing the causal effects of time-varying exposures on survival time is challenging. Standard survival methods that incorporate time-varying confounders as covariates generally yield biased effect estimates. Estimators using weighting by inverse probability of exposure can be unstable when confounders are highly predictive of exposure or the exposure is continuous. Structural nested accelerated failure time models (AFTMs) require artificial recensoring, which can cause estimation difficulties. Here, we introduce the structural nested cumulative survival time model (SNCSTM). This model assumes that intervening to set exposure at time to zero has an additive effect on the subsequent conditional hazard given exposure and confounder histories when all subsequent exposures have already been set to zero. We show how to fit it using standard software for generalized linear models and describe two more efficient, double robust, closed-form estimators. All three estimators avoid the artificial recensoring of AFTMs and the instability of estimators that use weighting by the inverse probability of exposure. We examine the performance of our estimators using a simulation study and illustrate their use on data from the UK Cystic Fibrosis Registry. The SNCSTM is compared with a recently proposed structural nested cumulative failure time model, and several advantages of the former are identified.

摘要

在评估随时间变化的暴露因素对生存时间的因果效应时,考虑随时间变化的混杂因素具有挑战性。将随时间变化的混杂因素作为协变量纳入的标准生存方法通常会产生有偏差的效应估计值。当混杂因素对暴露具有高度预测性或暴露是连续的时,使用暴露逆概率加权的估计器可能不稳定。结构嵌套加速失效时间模型(AFTM)需要人工重新截尾,这可能导致估计困难。在此,我们引入结构嵌套累积生存时间模型(SNCSTM)。该模型假设,当所有后续暴露都已设为零时,在时间 将暴露设为零的干预对给定暴露和混杂因素历史的后续条件风险具有累加效应。我们展示了如何使用广义线性模型的标准软件对其进行拟合,并描述了另外两种更高效、双稳健的封闭式估计器。所有这三种估计器都避免了AFTM的人工重新截尾以及使用暴露逆概率加权的估计器的不稳定性。我们通过模拟研究检验了我们的估计器的性能,并说明了它们在英国囊性纤维化登记处数据中的应用。将SNCSTM与最近提出的结构嵌套累积失效时间模型进行了比较,并确定了前者的几个优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f76f/7317577/18175f485e9b/BIOM-76-472-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验