Suppr超能文献

基于自适应反投影的光声计算机断层成像中的条纹伪影抑制

Streak artifact suppression in photoacoustic computed tomography using adaptive back projection.

作者信息

Cai Chuangjian, Wang Xuanhao, Si Ke, Qian Jun, Luo Jianwen, Ma Cheng

机构信息

Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.

These authors contribute equally.

出版信息

Biomed Opt Express. 2019 Aug 26;10(9):4803-4814. doi: 10.1364/BOE.10.004803. eCollection 2019 Sep 1.

Abstract

For photoacoustic computed tomography (PACT), an insufficient number of ultrasound detectors can cause serious streak-type artifacts. These artifacts get overlaid on top of image features, and thus locally jeopardize image quality and resolution. Here, a reconstruction algorithm, termed Contamination-Tracing Back-Projection (CTBP), is proposed for the mitigation of streak-type artifacts. During reconstruction, CTBP adaptively adjusts the back-projection weight, whose value is determined by the likelihood of contamination, to minimize the negative influences of strong absorbers. An iterative solution of the eikonal equation is implemented to accurately trace the time of flight of different pixels. Numerical, phantom and experiments demonstrate that CTBP can dramatically suppress streak artifacts in PACT and improve image quality.

摘要

对于光声计算机断层扫描(PACT),超声探测器数量不足会导致严重的条纹型伪影。这些伪影叠加在图像特征之上,从而局部损害图像质量和分辨率。在此,提出了一种称为污染追踪反投影(CTBP)的重建算法,用于减轻条纹型伪影。在重建过程中,CTBP自适应调整反投影权重,其值由污染可能性决定,以最小化强吸收体的负面影响。实现了程函方程的迭代解,以准确追踪不同像素的飞行时间。数值模拟、体模和实验表明,CTBP可以显著抑制PACT中的条纹伪影并提高图像质量。

相似文献

1
Streak artifact suppression in photoacoustic computed tomography using adaptive back projection.
Biomed Opt Express. 2019 Aug 26;10(9):4803-4814. doi: 10.1364/BOE.10.004803. eCollection 2019 Sep 1.
2
Streak artifact suppressed back projection for sparse-view photoacoustic computed tomography.
Appl Opt. 2023 May 20;62(15):3917-3925. doi: 10.1364/AO.487957.
4
Full and hybrid iterative reconstruction to reduce artifacts in abdominal CT for patients scanned without arm elevation.
Acta Radiol. 2017 Sep;58(9):1085-1093. doi: 10.1177/0284185116684675. Epub 2017 Jan 9.
6
Iterative image reconstruction using modified non-local means filtering for limited-angle computed tomography.
Phys Med. 2016 Sep;32(9):1041-51. doi: 10.1016/j.ejmp.2016.07.310. Epub 2016 Aug 5.
8
Co-optimization method to improve lateral resolution in photoacoustic computed tomography.
Biomed Opt Express. 2022 Aug 9;13(9):4621-4636. doi: 10.1364/BOE.469744. eCollection 2022 Sep 1.
9
Reduction of guide needle streak artifact in CT-guided biopsy.
J Vasc Interv Radiol. 2014 Dec;25(12):1929-35. doi: 10.1016/j.jvir.2014.08.028. Epub 2014 Oct 11.
10
Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion.
IEEE Trans Med Imaging. 2009 Feb;28(2):250-60. doi: 10.1109/TMI.2008.929103.

引用本文的文献

1
Artifacts in photoacoustic imaging: Origins and mitigations.
Photoacoustics. 2025 Jul 5;45:100745. doi: 10.1016/j.pacs.2025.100745. eCollection 2025 Oct.
2
Wavelet-enhanced residual optimal transport for Mamba-based image restoration in photoacoustic tomography.
Photoacoustics. 2025 Jul 7;45:100749. doi: 10.1016/j.pacs.2025.100749. eCollection 2025 Oct.
4
Image restoration for ring-array photoacoustic tomography system based on blind spatially rotational deconvolution.
Photoacoustics. 2024 Apr 16;38:100607. doi: 10.1016/j.pacs.2024.100607. eCollection 2024 Aug.
5
Real-time dual-modal photoacoustic and fluorescence small animal imaging.
Photoacoustics. 2024 Feb 2;36:100593. doi: 10.1016/j.pacs.2024.100593. eCollection 2024 Apr.
6
Location-Dependent Spatiotemporal Antialiasing in Photoacoustic Computed Tomography.
IEEE Trans Med Imaging. 2023 Apr;42(4):1210-1224. doi: 10.1109/TMI.2022.3225565. Epub 2023 Apr 3.
7
Spectral crosstalk in photoacoustic computed tomography.
Photoacoustics. 2022 Apr 13;26:100356. doi: 10.1016/j.pacs.2022.100356. eCollection 2022 Jun.
8
Impact of skin tone on photoacoustic oximetry and tools to minimize bias.
Biomed Opt Express. 2022 Jan 20;13(2):875-887. doi: 10.1364/BOE.450224. eCollection 2022 Feb 1.
9
Three-dimensional view of out-of-plane artifacts in photoacoustic imaging using a laser-integrated linear-transducer-array probe.
Photoacoustics. 2020 Mar 12;19:100176. doi: 10.1016/j.pacs.2020.100176. eCollection 2020 Sep.

本文引用的文献

1
Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed .
Biomed Opt Express. 2019 Jun 19;10(7):3447-3462. doi: 10.1364/BOE.10.003447. eCollection 2019 Jul 1.
2
Reducing artifacts in photoacoustic imaging by using multi-wavelength excitation and transducer displacement.
Biomed Opt Express. 2019 Jun 3;10(7):3124-3138. doi: 10.1364/BOE.10.003124. eCollection 2019 Jul 1.
3
Deep learning for photoacoustic tomography from sparse data.
Inverse Probl Sci Eng. 2018 Sep 11;27(7):987-1005. doi: 10.1080/17415977.2018.1518444. eCollection 2019.
4
Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation.
Biomed Opt Express. 2018 Sep 4;9(10):4613-4630. doi: 10.1364/BOE.9.004613. eCollection 2018 Oct 1.
5
Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1382-1393. doi: 10.1109/TMI.2018.2820382.
6
Double-Stage Delay Multiply and Sum Beamforming Algorithm: Application to Linear-Array Photoacoustic Imaging.
IEEE Trans Biomed Eng. 2018 Jan;65(1):31-42. doi: 10.1109/TBME.2017.2690959. Epub 2017 Apr 5.
7
Three-dimensional optoacoustic reconstruction using fast sparse representation.
Opt Lett. 2017 Mar 1;42(5):979-982. doi: 10.1364/OL.42.000979.
8
Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.
Med Phys. 2015 Sep;42(9):5444-52. doi: 10.1118/1.4928596.
9
The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging.
IEEE Trans Med Imaging. 2015 Apr;34(4):940-9. doi: 10.1109/TMI.2014.2371235. Epub 2014 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验