Suppr超能文献

用于光声层析成像中基于曼巴算法的图像恢复的小波增强残差最优传输

Wavelet-enhanced residual optimal transport for Mamba-based image restoration in photoacoustic tomography.

作者信息

Chan Simon C K, Huang Bingxin, Kim Hannah H, Tsang Victor T C, Wong Terence T W

机构信息

Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.

Research Center for Medical Imaging and Analysis, The Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Photoacoustics. 2025 Jul 7;45:100749. doi: 10.1016/j.pacs.2025.100749. eCollection 2025 Oct.

Abstract

Photoacoustic tomography (PAT) combines the high contrast of optical imaging with deep tissue penetration via ultrasound detection. However, hardware limitations often cause sparse sampling during image acquisition, resulting in disruptive streak artifacts that many current deep-learning methods fail to remove effectively. In this paper, we introduce Residual Condition Optimal Transport Mamba (RCMamba)-a novel framework that enhances residual optimal transport by integrating wavelet-based analysis with a hybrid multi-scale state space model backbone, specifically designed for sparse PAT image restoration. Our approach makes two primary contributions. First, we propose a wavelet residual-enhanced transport plan that leverages multi-resolution analysis and a novel wavelet coherence penalty to accurately capture the complex, scale-dependent sparsity patterns characteristic of sparse acquisitions. Second, we develop a hybrid multi-scale mamba architecture that uniquely combines window-based and global state space scanning to preserve both fine anatomical details and long-range structural information. Extensive experiments on vessel phantoms and mouse models across various sampling densities (16, 32, and 64 projections) demonstrate that RCMamba consistently outperforms state-of-the-art techniques in terms of artifact suppression and structural fidelity. RCMamba holds great promise in advancing the clinical potential of sparse-sampling PAT systems for diagnostic imaging and interventional procedures.

摘要

光声断层扫描(PAT)通过超声检测将光学成像的高对比度与深层组织穿透能力相结合。然而,硬件限制常常导致图像采集过程中的稀疏采样,从而产生干扰性条纹伪影,许多当前的深度学习方法都无法有效去除这些伪影。在本文中,我们引入了残差条件最优传输曼巴(RCMamba)——一种新颖的框架,它通过将基于小波的分析与混合多尺度状态空间模型主干相结合来增强残差最优传输,该主干专门为稀疏PAT图像恢复而设计。我们的方法做出了两个主要贡献。首先,我们提出了一种小波残差增强传输计划,该计划利用多分辨率分析和一种新颖的小波相干惩罚来准确捕捉稀疏采集所特有的复杂、依赖尺度的稀疏模式。其次,我们开发了一种混合多尺度曼巴架构,它独特地结合了基于窗口的和全局状态空间扫描,以保留精细的解剖细节和长程结构信息。在各种采样密度(16、32和64个投影)下对血管模型和小鼠模型进行的广泛实验表明,在伪影抑制和结构保真度方面,RCMamba始终优于现有技术。RCMamba在推进稀疏采样PAT系统用于诊断成像和介入程序的临床潜力方面具有巨大前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a41/12274724/0d012c591e29/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验