Suppr超能文献

通过人体姿态回归实现精确的行人检测

Accurate Pedestrian Detection by Human Pose Regression.

作者信息

Zhao Yun, Yuan Zejian, Chen Badong

出版信息

IEEE Trans Image Process. 2019 Sep 26. doi: 10.1109/TIP.2019.2942686.

Abstract

Pedestrian detection with high detection and localization accuracy is increasingly important for many practical applications. Due to the flexible structure of the human body, it is hard to train a template-based pedestrian detector that achieves a high detection rate and a good localization accuracy simultaneously. In this paper, we utilize human pose estimation to improve the detection and localization accuracy of pedestrian detection. We design two kinds of pose-indexed features that can considerably improve the discriminability of the detector. In addition to employing a two-stage pipeline to carry out these two tasks, we unify pose estimation and pedestrian detection into a cascaded decision forest in which they can cooperate sufficiently. To prevent irregular positive examples, such as truncated ones, from distracting the pedestrian detection and the pose regression, we clean the positive training data by realigning the bounding boxes and rejecting the wrong positive samples. Experimental results on the Caltech test dataset demonstrate the effectiveness of our proposed method. Our detector achieves 11.1% MR-2, outperforming all existing detectors without using the convolutional neural network (CNN). Moreover, our method can be assembled with other detectors based on CNNs to improve detection and localization performance. By collaborating with the recent CNN-based method, our detector achieves 5.5% MR-2 on the Caltech test dataset, outperforming the state-of-the-art methods.

摘要

对于许多实际应用而言,具备高检测和定位精度的行人检测变得越来越重要。由于人体结构的灵活性,很难训练出一种基于模板的行人检测器,使其同时实现高检测率和良好的定位精度。在本文中,我们利用人体姿态估计来提高行人检测的检测和定位精度。我们设计了两种姿态索引特征,它们可以显著提高检测器的可辨别性。除了采用两阶段流程来执行这两项任务外,我们还将姿态估计和行人检测统一到一个级联决策森林中,在其中它们可以充分协作。为了防止不规则的正样本(如截断的样本)干扰行人检测和姿态回归,我们通过重新调整边界框并剔除错误的正样本,对正训练数据进行清理。在加州理工学院测试数据集上的实验结果证明了我们所提方法的有效性。我们的检测器实现了11.1%的MR-2,在不使用卷积神经网络(CNN)的情况下优于所有现有检测器。此外,我们的方法可以与基于CNN的其他检测器组合,以提高检测和定位性能。通过与最近基于CNN的方法协作,我们的检测器在加州理工学院测试数据集上实现了5.5%的MR-2,优于当前的先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验