Suppr超能文献

语音障碍人士脑生成信号的单词识别:自编码器作为神经图灵机控制器在深度神经网络中的应用。

Recognition of words from brain-generated signals of speech-impaired people: Application of autoencoders as a neural Turing machine controller in deep neural networks.

机构信息

Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

出版信息

Neural Netw. 2020 Jan;121:186-207. doi: 10.1016/j.neunet.2019.07.012. Epub 2019 Sep 9.

Abstract

There is an essential requirement to support people with speech and communication disabilities. A brain-computer interface using electroencephalography (EEG) is applied to satisfy this requirement. A number of research studies to recognize brain signals using machine learning and deep neural networks (DNNs) have been performed to increase the brain signal detection rate, yet there are several defects and limitations in the techniques. Among them is the use in specific circumstances of machine learning. On the one hand, DNNs extract the features well and automatically. On the other hand, their use results in overfitting and vanishing problems. Consequently, in this research, a deep network is designed on the basis of an autoencoder neural Turing machine (DN-AE-NTM) to resolve the problems by the use of NTM external memory. In addition, the DN-AE-NTM copes with all kinds of signals with high detection rates. The data were collected by P300 EEG devices from several individuals under the same conditions. During the test, each individual was requested to skim images with one to six labels and focus on only one of the images. Not to focus on some images is analogous to producing unimportant information in the individual's brain, which provides unfamiliar signals. Besides the main P300 EEG dataset, EEG recordings of individuals with alcoholism and control individuals and the EEGMMIDB, MNIST, and ORL datasets were implemented and tested. The proposed DN-AE-NTM method classifies data with an average detection rate of 97.5%, 95%, 98%, 99.4%, and 99.1%, respectively, in situations where the signals are noisy so that only 20% of the data are reliable and include useful information.

摘要

必须为言语和交流障碍人士提供支持。使用脑电图(EEG)的脑机接口就是为了满足这一需求。已经进行了许多使用机器学习和深度神经网络(DNN)识别人脑信号的研究,以提高脑信号检测率,但这些技术存在一些缺陷和局限性。其中一个缺陷是在特定情况下使用机器学习。一方面,DNN 可以很好地自动提取特征;另一方面,它们的使用会导致过拟合和消失问题。因此,在这项研究中,设计了一种基于自动编码器神经图灵机(DN-AE-NTM)的深度网络,通过使用图灵机外部记忆来解决这些问题。此外,DN-AE-NTM 可以以高检测率处理各种信号。数据是通过 P300 EEG 设备从几个个体在相同条件下收集的。在测试过程中,要求每个个体浏览一到六个标签的图像,并只关注其中一张图像。不关注某些图像相当于个体大脑中产生不重要的信息,从而提供不熟悉的信号。除了主要的 P300 EEG 数据集外,还实现和测试了个体酒精中毒和对照组的 EEG 记录以及 EEGMMIDB、MNIST 和 ORL 数据集。所提出的 DN-AE-NTM 方法在信号嘈杂的情况下,数据的平均检测率分别为 97.5%、95%、98%、99.4%和 99.1%,可靠的数据仅为 20%,其中包含有用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验