Suppr超能文献

基于脑电图,利用深度学习模型进行跨受试者被动音乐音高感知

EEG-based cross-subject passive music pitch perception using deep learning models.

作者信息

Meng Qiang, Tian Lan, Liu Guoyang, Zhang Xue

机构信息

School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, Shandong 250101 China.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):6. doi: 10.1007/s11571-024-10196-9. Epub 2025 Jan 3.

Abstract

Pitch plays an essential role in music perception and forms the fundamental component of melodic interpretation. However, objectively detecting and decoding brain responses to musical pitch perception across subjects remains to be explored. In this study, we employed electroencephalography (EEG) as an objective measure to obtain the neural responses of musical pitch perception. The EEG signals from 34 subjects under hearing violin sounds at pitches G3 and B6 were collected with an efficient passive Go/No-Go paradigm. The lightweight modified EEGNet model was proposed for EEG-based pitch classification. Specifically, within-subject modeling with the modified EEGNet model was performed to construct individually optimized models. Subsequently, based on the within-subject model pool, a classifier ensemble (CE) method was adopted to construct the cross-subject model. Additionally, we analyzed the optimal time window of brain decoding for pitch perception in the EEG data and discussed the interpretability of these models. The experiment results show that the modified EEGNet model achieved an average classification accuracy of 77% for within-subject modeling, significantly outperforming other compared methods. Meanwhile, the proposed CE method achieved an average accuracy of 74% for cross-subject modeling, significantly exceeding the chance-level accuracy of 50%. Furthermore, we found that the optimal EEG data window for the pitch perception lies 0.4 to 0.9 s onset. These promising results demonstrate that the proposed methods can be effectively used in the objective assessment of pitch perception and have generalization ability in cross-subject modeling.

摘要

音高在音乐感知中起着至关重要的作用,是旋律诠释的基本组成部分。然而,客观地检测和解码不同受试者对音乐音高感知的大脑反应仍有待探索。在本研究中,我们采用脑电图(EEG)作为一种客观测量方法来获取音乐音高感知的神经反应。通过一种高效的被动式Go/No-Go范式,收集了34名受试者在听G3和B6音高的小提琴声音时的EEG信号。提出了轻量级的改进EEGNet模型用于基于EEG的音高分类。具体而言,使用改进的EEGNet模型进行受试者内建模,以构建个体优化模型。随后,基于受试者内模型池,采用分类器集成(CE)方法构建跨受试者模型。此外,我们分析了EEG数据中用于音高感知的大脑解码的最佳时间窗口,并讨论了这些模型的可解释性。实验结果表明,改进的EEGNet模型在受试者内建模中平均分类准确率达到77%,显著优于其他比较方法。同时,所提出的CE方法在跨受试者建模中平均准确率达到74%,显著超过50%的机遇水平准确率。此外,我们发现音高感知的最佳EEG数据窗口出现在起始后的0.4至0.9秒。这些有前景的结果表明,所提出的方法可有效地用于音高感知的客观评估,并且在跨受试者建模中具有泛化能力。

相似文献

10
Sertindole for schizophrenia.用于治疗精神分裂症的舍吲哚。
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.

本文引用的文献

7
Making ERP research more transparent: Guidelines for preregistration.使 ERP 研究更加透明:预注册指南。
Int J Psychophysiol. 2021 Jun;164:52-63. doi: 10.1016/j.ijpsycho.2021.02.016. Epub 2021 Mar 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验