Suppr超能文献

腰椎融合术后邻近节段病的预测因素。

Factors Predictive of Adjacent Segment Disease After Lumbar Spinal Fusion.

机构信息

Neurosurgical Service, Boston, Massachusetts, USA.

Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA; Kentucky Neuroscience Institute, Lexington, Kentucky, USA.

出版信息

World Neurosurg. 2020 Jan;133:e690-e694. doi: 10.1016/j.wneu.2019.09.112. Epub 2019 Sep 27.

Abstract

OBJECTIVE

Adjacent segment disease (ASD) is a long-term complication of lumbar spinal fusion. This study aims to evaluate demographic and operative factors that influence development of ASD after fusion for lumbar degenerative pathologies.

METHODS

A retrospective cohort study was performed on patients undergoing instrumented lumbar fusion for degenerative disorders (spondylolisthesis, stenosis, or intervertebral disk degeneration) with a minimum follow-up of 6 months.

RESULTS

Our inclusion criteria were met by 568 patients; 29.4% of patients had developed surgical ASD. Median follow-up was 2.8 years. Multivariate logistic regression analysis showed that decompression of segments outside the fusion construct had higher ASD (odds ratio = 2.6; P < 0.001), and those undergoing fusion for spondylolisthesis had lower ASD (odds ratio = 0.47; P = 0.003).

CONCLUSIONS

Results of our study show that the most important surgical factor contributing to ASD is decompression beyond fused levels. Hence caution should be exercised when decompressing spinal segments outside the fusion construct. Conversely, spondylolisthesis patients had the lowest ASD rates in our cohort.

摘要

目的

邻近节段疾病(ASD)是腰椎融合术后的长期并发症。本研究旨在评估影响腰椎退行性病变融合后 ASD 发展的人口统计学和手术因素。

方法

对接受退行性疾病(滑脱、狭窄或椎间盘退变)后路融合术的患者进行回顾性队列研究,随访时间至少为 6 个月。

结果

符合纳入标准的患者共 568 例,其中 29.4%的患者发生了手术性 ASD。中位随访时间为 2.8 年。多变量逻辑回归分析显示,融合结构外节段减压的 ASD 发生率较高(比值比=2.6;P<0.001),而接受滑脱融合术的 ASD 发生率较低(比值比=0.47;P=0.003)。

结论

本研究结果表明,导致 ASD 的最重要手术因素是融合节段以外的减压。因此,在对融合结构外的脊柱节段进行减压时应谨慎。相反,在我们的队列中,滑脱患者的 ASD 发生率最低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验