Suppr超能文献

通过红外光谱化学计量分析定量预测土壤中黑(热解)碳。

Quantitative forecasting black (pyrogenic) carbon in soils by chemometric analysis of infrared spectra.

机构信息

Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Reina Mercedes Av., 10, 41012, Seville, Spain.

Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (MNCN-CSIC), Serrano 115B, 28006, Madrid, Spain.

出版信息

J Environ Manage. 2019 Dec 1;251:109567. doi: 10.1016/j.jenvman.2019.109567. Epub 2019 Sep 27.

Abstract

A detailed and global quantitative assessment of the distribution of pyrogenic carbon (PyC) in soils remains unaccounted due to the current lack of unbiased methods for its routine quantification in environmental samples. Conventional oxidation with potassium dichromate has been reported as a useful approach for the determination of recalcitrant C in soils. However, its inaccuracy due to the presence of residual non-polar but still non-PyC requires additional analysis by C solid-state nuclear magnetic resonance (NMR) spectroscopy, which is expensive and time consuming. The goal of this work is to examine the possibility of applying infrared (IR) spectroscopy as a potential alternative. Different soil type samples (paddy soil, Histic Humaquept, Leptosol and Cambisol) have been used. The soils were digested with potassium dichromate to determine the PyC content in environmental samples. Partial Least Squares (PLS) regression was used to build calibration models to predict PyC from IR spectra. A set of artificially produced samples rich in PyC was used as reference to observe in detail the IR bands derived from aromatic structures resistant to dichromate oxidation, representing black carbon. The results showed successful PLS forecasting of PyC in the different samples by using spectra in the 1800-400 cm range. This lead to significant (P < 0.05) cross-validation coefficients for PyC, determined as the aryl C content of the oxidized residue. The Variable Importance for Projection (VIP) traces for the corresponding PLS regression models plotted in the whole IR range indicates the extent to which each IR band contributes to explain the aryl C and PyC contents. In fact, forecasting PyC in soils requires information from several IR regions. In addition to the expected IR bands corresponding to aryl C, other bands are informing about the patterns of oxygen-containing functional groups and the mineralogical composition characteristic of the soils with greater black carbon storage capacity. The VIP traces of the charred biomass samples confirm that aromatic bands (1620 and 1510 cm) are the most important in the prediction model for PyC-rich samples. These facts suggest that the mid-IR spectroscopy could be a potential tool to estimate the black carbon.

摘要

由于目前缺乏环境样品中常规定量测定难处理碳的无偏方法,因此仍然无法全面量化土壤中热解碳(PyC)的分布情况。用重铬酸钾进行的常规氧化已被报道为测定土壤中难处理碳的有用方法。但是,由于存在残留的非极性但仍非 PyC,因此其准确性受到影响,需要通过昂贵且耗时的碳固态核磁共振(NMR)光谱进行额外分析。这项工作的目的是检验应用红外(IR)光谱作为潜在替代方法的可能性。使用了不同类型的土壤样本(稻田土、Histic Humaquept、Leptosol 和 Cambisol)。用重铬酸钾消化土壤以测定环境样品中的 PyC 含量。使用偏最小二乘(PLS)回归建立校准模型,以从 IR 光谱预测 PyC。一组富含 PyC 的人工生成样品被用作参考,以详细观察来自耐重铬酸盐氧化的芳构结构的 IR 带,这些带代表黑碳。结果表明,通过使用 1800-400cm 范围内的光谱,可以成功地对不同样品中的 PyC 进行 PLS 预测。这导致了氧化残渣中芳基 C 含量的 PyC 测定的显著(P<0.05)交叉验证系数。在整个 IR 范围内绘制的相应 PLS 回归模型的变量重要性投影(VIP)迹线表明了每个 IR 带对解释芳基 C 和 PyC 含量的贡献程度。实际上,预测土壤中的 PyC 需要来自几个 IR 区域的信息。除了对应于芳基 C 的预期 IR 带之外,其他带还提供了有关含氧官能团模式和具有更高黑碳存储能力的土壤的矿物组成特征的信息。炭化生物质样品的 VIP 迹线证实,芳香带(1620 和 1510cm)在富含 PyC 样品的预测模型中最重要。这些事实表明,中红外光谱可能是估计黑碳的潜在工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验